Advertisement

As-Soon-As-Possible Top-k Query Processing in P2P Systems

  • William Kokou Dédzoé
  • Philippe Lamarre
  • Reza Akbarinia
  • Patrick Valduriez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7980)

Abstract

Top-k query processing techniques provide two main advantages for unstructured peer-to-peer (P2P) systems. First they avoid overwhelming users with too many results. Second they reduce significantly network resources consumption. However, existing approaches suffer from long waiting times. This is because top-k results are returned only when all queried peers have finished processing the query. As a result, query response time is dominated by the slowest queried peer. In this paper, we address this users’ waiting time problem. For this, we revisit top-k query processing in P2P systems by introducing two novel notions in addition to response time: the stabilization time and the cumulative quality gap. Using these notions, we formally define the as-soon-as-possible (ASAP) top-k processing problem. Then, we propose a family of algorithms called ASAP to deal with this problem. We validate our solution through implementation and extensive experimentation. The results show that ASAP significantly outperforms baseline algorithms by returning final top-k result to users in much better times.

Keywords

Query Processing Stabilization Time Query Execution Answer Message Fully Distribute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akbarinia, R., Martins, V., Pacitti, E., Valduriez, P.: Design and Implementation of Atlas P2P Architecture. In: Global Data Management, 1st edn. IOS Press (2006)Google Scholar
  2. 2.
    Akbarinia, R., Pacitti, E., Valduriez, P.: Reducing network traffic in unstructured p2p systems using top-k queries. Distributed and Parallel Databases 19(2-3), 67–86 (2006)CrossRefGoogle Scholar
  3. 3.
    Akbarinia, R., Pacitti, E., Valduriez, P.: Best position algorithms for top-k queries. In: Proceedings of Int. Conf. on Very Large Data Bases (VLDB), pp. 495–506 (2007)Google Scholar
  4. 4.
    Androutsellis-Theotokis, S., Spinellis, D.: A survey of peer-to-peer content distribution technologies. ACM Computing Surveys 36(4), 335–371 (2004)CrossRefGoogle Scholar
  5. 5.
    Arai, B., Das, G., Gunopulos, D., Koudas, N.: Anytime measures for top-k algorithms. In: Proceedings of Int. Conf. on Very Large Data Bases (VLDB), pp. 914–925 (2007)Google Scholar
  6. 6.
    Balke, W.-T., Nejdl, W., Siberski, W., Thaden, U.: Progressive distributed top k retrieval in peer-to-peer networks. In: Proceedings of Int. Conf. on Data Engineering (ICDE), pp. 174–185 (2005)Google Scholar
  7. 7.
    Bruno, N., Gravano, L., Marian, A.: Evaluating top-k queries over web-accessible databases. In: Proceedings of Int. Conf. on Data Engineering (ICDE), pp. 369–380 (2002)Google Scholar
  8. 8.
    Cao, P., Wan, Z.: Efficient top-k query calculation in distributed networks. In: Proceedings of Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 206–215 (2004)Google Scholar
  9. 9.
    Chaudhuri, S., Gravano, L.: Evaluating top-k selection queries. In: Proceedings of Int. Conf. on Very Large Databases (VLDB), pp. 397–410 (1999)Google Scholar
  10. 10.
    Chaudhuri, S., Gravano, L., Marian, A.: Optimizing top-k selection queries over multimedia repositories. IEEE Transactions on Knowledge Data Engineering 16(8), 992–1009 (2004)CrossRefGoogle Scholar
  11. 11.
    Cuenca-Acuna, F.M., Peery, C., Martin, R.P., Nguyen, T.D.: Planetp: Using gossiping to build content addressable peer-to-peer information sharing communities. In: Proceedings of IEEE Int. Symp. on High-Performance Distributed Computing (HPDC), pp. 236–249 (2003)Google Scholar
  12. 12.
    Dedzoe, W.K., Lamarre, P., Akbarinia, R., Valduriez, P.: Asap top-k query processing in unstructured p2p systems. In: Proceedings of IEEE Int. Conf on Peer-to-Peer Computing (P2P), pp. 187–196 (2010)Google Scholar
  13. 13.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Proceedings of Symposium on Principles of Database Systems (PODS), pp. 102–113 (2001)Google Scholar
  14. 14.
    Feng, G., Jiang, Y., Chen, G., Gu, Q., Lu, S., Chen, D.: Replication strategy in unstructured peer-to-peer systems. In: Proceedings of IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1–8 (2007)Google Scholar
  15. 15.
    Gummadi, P.K., Saroiu, S., Gribble, S.D.: A measurement study of napster and gnutella as examples of peer-to-peer file sharing systems. Computer Communication Review 32(1), 82 (2002)CrossRefGoogle Scholar
  16. 16.
    Güntzer, U., Balke, W.-T., Kießling, W.: Optimizing multi-feature queries for image databases. In: Proceedings of Int. Conf. on Very Large DataBases (VLDB), pp. 419–428 (2000)Google Scholar
  17. 17.
    Hose, K., Karnstedt, M., Sattler, K.-U., Zinn, D.: Processing top-n queries in p2p-based web integration systems with probabilistic guarantees. In: Proceedings of International Workshop on web and databases (WebDB), pp. 109–114 (2005)Google Scholar
  18. 18.
    Hristidis, V., Koudas, N., Papakonstantinou, Y.: Prefer: A system for the efficient execution of multi-parametric ranked queries. In: Proceedings of ACM. Int. Conf. on Management of Data (SIGMOD), pp. 259–270 (2001)Google Scholar
  19. 19.
    Jelasity, M., Montresor, A.: Epidemic-style proactive aggregation in large overlay networks. In: Int. Conference on Distributed Computing Systems (ICDCS), pp. 102–109 (2004)Google Scholar
  20. 20.
    Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The Peersim simulator, http://peersim.sf.net
  21. 21.
    Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate information. In: Symposium on Foundations of Computer Science (FOCS), pp. 482–491 (2003)Google Scholar
  22. 22.
    Michel, S., Triantafillou, P., Weikum, G.: Klee: A framework for distributed top-k query algorithms. In: Proceedings of Int. Conf. on Very Large Data Bases (VLDB), pp. 637–648 (2005)Google Scholar
  23. 23.
    Ooi, B.C., Shu, Y., Tan, K.-L.: Relational data sharing in peer-based data management systems. SIGMOD Record 32(3), 59–64 (2003)CrossRefGoogle Scholar
  24. 24.
    Qin, L., Yu, J.X., Chang, L.: Diversifying top-k results. PVLDB 5(11), 1124–1135 (2012)Google Scholar
  25. 25.
    Ramaswamy, L., Chen, J., Parate, P.: Coquos: Lightweight support for continuous queries in unstructured overlays. In: Proceedings of IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1–10 (2007)Google Scholar
  26. 26.
    Schmid, S., Wattenhofer, R.: Structuring unstructured peer-to-peer networks. In: Proceedings of IEEE Int. Conf. on High Performance Computing (HiPC), pp. 432–442 (2007)Google Scholar
  27. 27.
    Shmueli-Scheuer, M., Li, C., Mass, Y., Roitman, H., Schenkel, R., Weikum, G.: Best-effort top-k query processing under budgetary constraints. In: Proceedings of Int. Conf. on Data Engineering (ICDE), pp. 928–939 (2009)Google Scholar
  28. 28.
    Tatarinov, I., Ives, Z.G., Madhavan, J., Halevy, A.Y., Suciu, D., Dalvi, N.N., Dong, X., Kadiyska, Y., Miklau, G., Mork, P.: The piazza peer data management project. SIGMOD Record 32(3), 47–52 (2003)CrossRefGoogle Scholar
  29. 29.
    Terpstra, W.W., Kangasharju, J., Leng, C., Buchmann, A.P.: Bubblestorm: resilient, probabilistic, and exhaustive peer-to-peer search. In: SIGCOMM, pp. 49–60 (2007)Google Scholar
  30. 30.
    Tsoumakos, D., Roussopoulos, N.: Analysis and comparison of p2p search methods. In: Proceedings of Int. Conf. on Scalable Information Systems (Infoscale), p. 25 (2006)Google Scholar
  31. 31.
    Vlachou, A., Doulkeridis, C., Nørvåg, K.: Distributed top-k query processing by exploiting skyline summaries. Distributed and Parallel Databases 30(3-4), 239–271 (2012)CrossRefGoogle Scholar
  32. 32.
    Vlachou, A., Doulkeridis, C., Nørvåg, K., Vazirgiannis, M.: On efficient top-k query processing in highly distributed environments. In: Proceedings of ACM. Int Conf. on Management of Data (SIGMOD), pp. 753–764 (2008)Google Scholar
  33. 33.
    Ye, M., Lee, W.-C., Lee, D.L., Liu, X.: Distributed processing of probabilistic top-k queries in wireless sensor networks. IEEE Trans. Knowl. Data Eng. 25(1), 76–91 (2013)CrossRefGoogle Scholar
  34. 34.
    Zhao, K., Tao, Y., Zhou, S.: Efficient top-k processing in large-scaled distributed environments. Data and Knowledge Engineering 63(2), 315–335 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • William Kokou Dédzoé
    • 1
  • Philippe Lamarre
    • 2
  • Reza Akbarinia
    • 3
  • Patrick Valduriez
    • 3
  1. 1.INRIARennesFrance
  2. 2.INSA de LyonFrance
  3. 3.INRIA and LIRMMMontpellierFrance

Personalised recommendations