Metadata Quality Assessment Tool for Open Access Cultural Heritage Institutional Repositories

  • Emanuele Bellini
  • Paolo Nesi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7990)


Currently, the Metadata Quality in Cultural Heritage Institutional Repositories (IR) is an open issue. In fact, sometimes the value of the metadata fields contains typos, are out of standards, or are totally missing affecting the possibility of searching, discovering and obtaining the digital resource described. Goal of this work is to support institutions to assess the quality of their repository defining a Quality Profile for their metadata schema (e.g. Dublin core) and identifying the Completeness, Accuracy and Consistency as High level metrics. These metrics are translated in a number of computable Low level metrics (formulas) and measurement criteria. The quality measurement process has been implemented exploiting the Grid based AXMEDIS infrastructure to rise up the OAI-PMH harvesting and metadata processing performance. The quality profile metrics and the prototype have been tested on three Open Access Institution Repositories of Italian universities and the evaluation results are presented.


Quality Profile Institutional Repository Genomic Standard Consortium Metadata Schema Metadata Record 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guy, M., Powell, A., Day, M.: Improving the Quality of Metadata in Eprint Archive. ARIADNE (38) (January 2004),
  2. 2.
    Evans, Lindsay: The management of quality control, 6th edn. Mason, OH Thompson Google Scholar
  3. 3.
    Margaritopoulos, T., Margaritopoulos, M., Mavridis, I., Manitsaris, A.: A conceptual framework for metadata quality assessment. In: Proceedings of the 2008 International Conference on Dublin Core and Metadata Application, DCMI 2008 (2008)Google Scholar
  4. 4.
    Jane, B., Sarah, C., Hey Jessie, M.N.: Building quality assurance into metadata creation: an analysis based on the learning objects and e-prints communities of practice. In: Proceedings 2003 Dublin Core Conference, Seattle, Washington, USA, September 28-October 2, pp. 39–48. Information Institute of Syracuse, NY (2003)Google Scholar
  5. 5.
    ISO 14721:2003 Reference Model for an Open Archival Information System (OAIS) Google Scholar
  6. 6.
    Park, J.-R.: Metadata quality in digital repositories: A survey of the current state of the art. Cataloging & Classification Quarterly 47(3-4), 213–228 (2009)CrossRefGoogle Scholar
  7. 7.
    Bellini, P., Bruno, I., Cenni, D., Nesi, P.: Micro grids for scalable media computing and intelligence on distributed scenarious. IEEE Multimedia 19(2), 69–79 (2012)CrossRefGoogle Scholar
  8. 8.
    IFLA - Functional Requirements for Bibliographic Records FRBR, Final Report (1998),
  9. 9.
    Emanuele, B., Aime, D.M., Paolo, N.: Assessing Open Archive OAI-PMH implementations. DMS (2010) Google Scholar
  10. 10.
    Bui, Y., Park, J.-R.: An assessment of metadata quality: A case study of the National Science Digital Library Metadata Repository, IST Research Day (2006)Google Scholar
  11. 11.
    Miles, E.: Metadata Use in OAI-Compliant Institutional Repositories. J. Digit. Inf. 8(2) (2007) Google Scholar
  12. 12.
    Gudrun, F., Norbert, F.: Heterogeneity in Open Archives Metadata-Cyclades project Google Scholar
  13. 13.
    Xavier, O., Erik, D.: Towards Automatic Evaluation of Metadata Quality in Digital Repositories,
  14. 14.
    Strong, D.M., Lee, Y.W., Wang, R.Y.: Data quality in context. Communications of the ACM 40(5), 103–110 (1997)CrossRefGoogle Scholar
  15. 15.
    Zhu, X., Gauch, S.: Incorporating quality metrics in centralized/distributed information retrieval on the world wide web. In: Research and Development in Information Retrieval, pp. 288–295 (2000)Google Scholar
  16. 16.
    Jura, J.: Juran on quality by design. Free Press, New York (1992) Google Scholar
  17. 17.
    NISO A Framework of Guidance for Building Good Digital Collections, pp. 61–62. NISO Press, Bethesda (2007) Google Scholar
  18. 18.
    Stvilia: Measuring Information Quality Dissertation – Urbana- Illinois (2006)Google Scholar
  19. 19.
    Moen, W.E., Stewart, E.L., McClure, C.R.: Assessing metadata quality: Findings and methodological considerations from an evaluation of the u.s. government information locator service (gils). In: Smith, T.R. (ed.) ADL 1998: Proceedings of the Advances in Digital Libraries Conference, pp. 246–255 (1998)Google Scholar
  20. 20.
    Stvilia, B., Gasser, L., Twidale, M.: A framework for information quality assessment. Journal of the American Society for Information Science and Technology 58(12), 1720–1733 (2007)CrossRefGoogle Scholar
  21. 21.
    Bruce, T.R., Hillmann, D.: The continuum of metadata quality: defining, expressing, exploiting. In: Metadata in Practice, pp. 238–256. ALA Editions, Chicago (2004)Google Scholar
  22. 22.
    Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. In: Encynclopedia of Software Engineering. Wiley (1994)Google Scholar
  23. 23.
    Van Solingen, R., Egon, B.: The Goal/question/Metric Method: a practical guide for quality improvment of software development – The Mcgraw-Hill Companies ISBN0077095537 Google Scholar
  24. 24.
    Baba, P., Denise, E.: A Model for Data Quality AssessmentGoogle Scholar
  25. 25.
    IETF RFC 2045 Multipurpose Internet Mail Extensions (MIME) (1996) Google Scholar
  26. 26.
    David, Z.: Can you trust your data? Measurement and Analysis Infrastructure Diagnosis 2007 SEI Google Scholar
  27. 27.
    ISO/IEC IS 15939, Software Engineering – Software Measurement Process (2002) Google Scholar
  28. 28.
    Patrik, B., Per, J.: A Goal Question Metric Based Approach for Efficient Measurement Framework Definition. In: International Symposium of Empirical Software Engineering (ISESE 2006), Rio de janeiro Brazil (2006) Google Scholar
  29. 29.
    Carl, L., Herbert, Nelson, M.: Implementing Guidelines for the Open Archives Initiative for Metadata Harvesting: Guidelines for Harvesting Implementes (2002) Google Scholar
  30. 30.
    Bellini, P., Bruno, I., Nesi, P.: Visual Programming of Content Processing Grid. In: The 15th International Conference on Distributed Multimedia Systems, DMS 2009 (2009)Google Scholar
  31. 31.
    Liolios, K., Schriml, L., Hirschman, L., Pagani, I., Nosrat, B., Sterk, P., White, O., Rocca-Serra, P., Sansone, S.-A., Taylor, C., Kyrpides, N.C., Field, D.: The Metadata Coverage Index (MCI): A standardized metric for quantifying database metadata richness. An Open Access Journal of Genomic Standard Consortium SIGS,

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emanuele Bellini
    • 1
  • Paolo Nesi
    • 1
  1. 1.Dept. di Ingegneria dell’InformazioneUniversity of FlorenceFlorenceItaly

Personalised recommendations