Advertisement

Alignment-Based Metrics for Trace Comparison

  • Matthias Weber
  • Kathryn Mohror
  • Martin Schulz
  • Bronis R. de Supinski
  • Holger Brunst
  • Wolfgang E. Nagel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8097)

Abstract

Due to the complexity of today’s architectures and applications, performance analysis and optimization are essential, and tracebased techniques have proven to be a powerful approach. However, a manual comparison of traces is difficult and time consuming because of the large volume of detailed data and the need to correctly line up trace events. Our solution is a set of techniques that automatically align traces so they can be compared, along with novel metrics that quantify the differences between traces, both in terms of differences in the event stream and timing differences across events. Further, we introduce visualization techniques that highlight and facilitate understanding of the sources of the differences. We demonstrate the effectiveness of our solution by showing automatically detected performance and code differences across different versions of two real-world applications.

Keywords

High Performance Computing Alignment Algorithm Event Stream Event Trace Process Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ASC Sequoia Benchmark Codes, https://asc.llnl.gov/sequoia/benchmarks/
  2. 2.
  3. 3.
    Arsenlis, A., Cai, W., Tang, M., Rhee, M., Oppelstrup, T., Hommes, G., Pierce, T.G., Bulatov, V.V.: Enabling Strain Hardening Simulations with Dislocation Dynamics. Modelling and Simulation in Materials Sci. and Eng. 15(6), 553 (2007)CrossRefGoogle Scholar
  4. 4.
    Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (2010)zbMATHGoogle Scholar
  5. 5.
    Brunst, H., Hoppe, H.-C., Nagel, W.E., Winkler, M.: Performance Optimization for Large Scale Computing: The Scalable VAMPIR Approach. In: Alexandrov, V.N., Dongarra, J., Juliano, B.A., Renner, R.S., Tan, C.J.K. (eds.) ICCS 2001, Part II. LNCS, vol. 2074, pp. 751–760. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Gahvari, H., Baker, A.H., Schulz, M., Yang, U.M., Jordan, K.E., Gropp, W.: Modeling the Performance of an Algebraic Multigrid Cycle on HPC Platforms. In: Proceedings of the International Conference on Supercomputing, ICS 2011, pp. 172–181 (2011)Google Scholar
  7. 7.
    Gusfield, D.: Algorithms on Stings, Trees, and Sequences. Computer Science and Computational Biology (1997)Google Scholar
  8. 8.
    Hauswirth, M.: Understanding Program Performance Using Temporal Vertical Profiles. PhD thesis, Boulder, CO, USA (2005)Google Scholar
  9. 9.
    Hirschberg, D.S.: A Linear Space Algorithm for Computing Maximal Common Subsequences. Commun. ACM 18(6), 341–343 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Karavanic, K.L., Miller, B.P.: Experiment Management Support for Performance Tuning. In: Proceedings of the 1997 ACM/IEEE Conference on Supercomputing (CDROM), Supercomputing 1997, pp. 1–10 (1997)Google Scholar
  11. 11.
    Knüpfer, A., Brendel, R., Brunst, H., Mix, H., Nagel, W.E.: Introducing the Open Trace Format (OTF). In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3992, pp. 526–533. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Krell. Open|SpeedShop (2012), http://www.openspeedshop.org/
  13. 13.
    Mohror, K., Karavanic, K.L.: Towards Scalable Event Tracing for High End Systems. In: Perrott, R., Chapman, B.M., Subhlok, J., de Mello, R.F., Yang, L.T. (eds.) HPCC 2007. LNCS, vol. 4782, pp. 695–706. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Needleman, S.B., Wunsch, C.D.: A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins. Journal of Molecular Biology 48(3), 443–453 (1970)CrossRefGoogle Scholar
  15. 15.
    Schulz, M., de Supinski, B.R.: Practical Differential Profiling. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 97–106. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Schulz, M., Galarowicz, J., Maghrak, D., Hachfeld, W., Montoya, D., Cranford, S.: Open|SpeedShop: An Open Source Infrastructure for Parallel Performance Analysis. Scientific Programming 16(2-3), 105–121 (2008)Google Scholar
  17. 17.
    Song, F., Wolf, F., Bhatia, N., Dongarra, J., Moore, S.: An Algebra for Cross-Experiment Performance Analysis. In: Proceedings of the 2004 International Conference on Parallel Processing, ICPP 2004, pp. 63–72 (2004)Google Scholar
  18. 18.
    Weber, M., Brendel, R., Brunst, H.: Trace File Comparison with a Hierarchical Sequence Alignment Algorithm. In: Proceedings of the 2012 IEEE 10th International Symposium on Parallel and Distributed Processing with Applications, ISPA 2012, pp. 247–254 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Matthias Weber
    • 1
    • 2
  • Kathryn Mohror
    • 2
  • Martin Schulz
    • 2
  • Bronis R. de Supinski
    • 2
  • Holger Brunst
    • 1
  • Wolfgang E. Nagel
    • 1
  1. 1.Center for Information Services and High Performance ComputingTechnische Universität DresdenGermany
  2. 2.Center for Applied Scientific ComputingLawrence Livermore National LaboratoryUSA

Personalised recommendations