Scheduling Jobs in the Cloud Using On-Demand and Reserved Instances

  • Siqi Shen
  • Kefeng Deng
  • Alexandru Iosup
  • Dick Epema
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8097)


Deploying applications in leased cloud infrastructure is increasingly considered by a variety of business and service integrators. However, the challenge of selecting the leasing strategy — larger or faster instances? on-demand or reserved instances? etc.— and to configure the leasing strategy with appropriate scheduling policies is still daunting for the (potential) cloud user. In this work, we investigate leasing strategies and their policies from a broker’s perspective. We propose, CoH, a family of Cloud-based, online, Hybrid scheduling policies that minimizes rental cost by making use of both on-demand and reserved instances. We formulate the resource provisioning and job allocation policies as Integer Programming problems. As the policies need to be executed online, we limit the time to explore the optimal solution of the integer program, and compare the obtained solution with various heuristics-based policies; then automatically pick the best one. We show, via simulation and using multiple real-world traces, that the hybrid leasing policy can obtain significantly lower cost than typical heuristics-based policies.


Cloud Provider Cloud Resource Integer Program Problem Rental Cost IaaS Cloud 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marshall, P., Keahey, K., Freeman, T.: Elastic site: Using clouds to elastically extend site resources. In: CCGrid 2010, pp. 43–52 (2010)Google Scholar
  2. 2.
    Schwiegelshohn, U., Badia, R.M., Bubak, M., et al.: Perspectives on grid computing. In: FGCS 2010, vol. 26(8) (2010)Google Scholar
  3. 3.
    Murphy, M., Kagey, B., Fenn, M., Goasguen, S.: Dynamic provisioning of virtual organization clusters. In: CCGrid 2009, pp. 364–371 (2009)Google Scholar
  4. 4.
    Ben-Yehuda, O.A., Schuster, A., Sharov, A., Silberstein, M., Iosup, A.: Expert: Pareto-efficient task replication on grids and a cloud. In: IPDPS 2012, pp. 167–178 (2012)Google Scholar
  5. 5.
    Fölling, A., Hofmann, M.: Improving scheduling performance using a Q-learning-based leasing policy for clouds. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 337–349. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    de Assuncao, M.D., Costanzo, A.d., Buyya, R.: Evaluating the cost-benefit of using cloud computing to extend the capacity of clusters. In: HPDC 2009, pp. 141–150 (2009)Google Scholar
  7. 7.
    Warneke, D., Kao, O.: Exploiting dynamic resource allocation for efficient parallel data processing in the cloud. In: TPDS 2011, pp. 985–997 (2011)Google Scholar
  8. 8.
    Webb, J.: How the cloud helps Netflix (May 2011),
  9. 9.
    Sharma, U., Shenoy, P., Sahu, S., Shaikh, A.: A cost-aware elasticity provisioning system for the cloud. In: ICDCS 2011, pp. 559–570 (2011)Google Scholar
  10. 10.
    Nicolae, B., Cappello, F., Antoniu, G.: Optimizing multi-deployment on clouds by means of self-adaptive prefetching. In: Euro-Par 2011, pp. 503–513 (2011)Google Scholar
  11. 11.
    Villegas, D., Antoniou, A., Sadjadi, S.M., Iosup, A.: An analysis of provisioning and allocation policies for infrastructure-as-a-service clouds. In: CCGrid 2012 (2012)Google Scholar
  12. 12.
    Huberman, B.A.: An Economics Approach to Hard Computational Problems. Science 275, 51–54 (1997)CrossRefGoogle Scholar
  13. 13.
    Stillwell, M., Vivien, F., Casanova, H.: Dynamic fractional resource scheduling for hpc workloads. In: IPDPS 2010 (2010)Google Scholar
  14. 14.
    Iosup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.: Performance analysis of cloud computing services for many-tasks scientific computing. TPDS (2010)Google Scholar
  15. 15.
    Nae, V., Iosup, A., Prodan, R.: Dynamic resource provisioning in massively multiplayer online games. TPDS 22(3) (2011)Google Scholar
  16. 16.
    Feitelson, D.: Parallel Workloads Archive,
  17. 17.
    Iosup, A., Li, H., Jan, M., Anoep, S., Dumitrescu, C., Wolters, L., Epema, D.H.J.: The grid workloads archive. FGCS 2008 24(7), 672–686 (2008)Google Scholar
  18. 18.
    Guo, A.Y., Iosup: The game trace archive. In: NETGAMES (2012)Google Scholar
  19. 19.
    Guo, Y., Shen, S., Visser, O., Iosup, A.: An Analysis of Online Match-Based Games. In: MMVE 2012 (2012)Google Scholar
  20. 20.
    Zhang, T., Du, Z., Chen, Y., Ji, X., Wang, X.: Typical virtual appliances: An optimized mechanism for virtual appliances provisioning and management. Journal of Systems and Software 84(3), 377 (2011)CrossRefGoogle Scholar
  21. 21.
    Hadji, M., Zeghlache, D.: Minimum cost maximum flow algorithm for dynamic resource allocation in clouds. In: CLOUD 2012, pp. 876–882 (2012)Google Scholar
  22. 22.
    Ren, S., He, Y., Xu, F.: Provably-efficient job scheduling for energy and fairness in geographically distributed data centers. In: ICDCS 2012, pp. 22–31 (2012)Google Scholar
  23. 23.
    Tordsson, J., Montero, R.S., Moreno-Vozmediano, R., Llorente, I.M.: Cloud brokering mechanisms for optimized placement of virtual machines across multiple providers. Future Gener. Comput. Syst. 28(2) (2012)Google Scholar
  24. 24.
    Genaud, S., Gossa, J.: Cost-wait trade-offs in client-side resource provisioning with elastic clouds. In: CLOUD 2011 (2011)Google Scholar
  25. 25.
    Deng, K., Verboon, R., Iosup, A.: A Periodic Portfolio Scheduler for Scientific Computing in the Data Center. In: JSSPP (2013)Google Scholar
  26. 26.
    Oprescu, A., Kielmann, T.: Bag-of-tasks scheduling under budget constraints. In: CloudCom 2010, pp. 351–359 (2010)Google Scholar
  27. 27.
    Mao, M.M., Li, J., Humphrey: Cloud auto-scaling with deadline and budget constraints. In: GRID 2010, pp. 41–48 (2010)Google Scholar
  28. 28.
    Hong, Y.J., Xue, J., Thottethodi: Selective commitment and selective margin: Techniques to minimize cost in an iaas cloud. In: ISPASS 2012, pp. 99–109 (2012)Google Scholar
  29. 29.
    Chaisiri, S., Lee, B.S., Niyato, D.: Optimization of resource provisioning cost in cloud computing. Transactions on Services Computing, 164–177 (2012)Google Scholar
  30. 30.
    Ostermann, S., Prodan, R.: Impact of variable priced cloud resources on scientific workflow scheduling. In: Euro-Par 2012, pp. 350–362 (2012)Google Scholar
  31. 31.
    Song, Y., Zafer, M., Lee, K.W.: Optimal bidding in spot instance market. In: INFOCOM 2012, pp. 190–198 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Siqi Shen
    • 1
  • Kefeng Deng
    • 1
    • 2
  • Alexandru Iosup
    • 1
  • Dick Epema
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.National University of Defense TechnologyChangshaChina

Personalised recommendations