Advertisement

Multi-level Clustering on Metric Spaces Using a Multi-GPU Platform

  • Ricardo J. Barrientos
  • José I. Gómez
  • Christian Tenllado
  • Manuel Prieto Matias
  • Pavel Zezula
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8097)

Abstract

The field of similarity search on metric spaces has been widely studied in the last years, mainly because it has proven suitable for a number of application domains such as multimedia retrieval and computational biology, just to name a few. To achieve efficient query execution throughput, it is essential to exploit the intrinsic parallelism in respective search algorithms. Many strategies have been proposed in the literature to parallelize these algorithms either on shared or distributed memory multiprocessor systems. More recently, GPUs have been proposed to evaluate similarity queries for small indexes that fit completely in GPU’s memory. However, most of the real databases in production are much larger. In this paper, we propose multi-GPU metric space techniques that are capable to perform similarity search in datasets large enough not to fit in memory of GPUs. Specifically, we implemented a hybrid algorithm which makes use of CPU-cores and GPUs in a pipeline. We also present a hierarchical multi-level index named List of Superclusters (LSC), with suitable properties for memory transfer in a GPU.

Keywords

Similarity Search Metric Spaces GPU Range queries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    Barrientos, R., Gómez, J., Tenllado, C., Prieto, M., Marin, M.: Range query processing in a multi-gpu environment. In: 10th IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA 2012), pp. 419–426 (2012)Google Scholar
  3. 3.
    Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Rabitti, F.: Cophir: a test collection for content-based image retrieval. CoRR abs/0905.4627 (2009), http://cophir.isti.cnr.it
  4. 4.
    Chavéz, E., Navarro, G.: An effective clustering algorithm to index high dimensional metric spaces. In: The 7th International Symposium on String Processing and Information Retrieval (SPIRE 2000), pp. 75–86. IEEE CS Press (2000)Google Scholar
  5. 5.
    Chávez, E., Navarro, G.: A compact space decomposition for effective metric indexing. Pattern Recognition Letters 26(9), 1363–1376 (2005)CrossRefGoogle Scholar
  6. 6.
    Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)CrossRefGoogle Scholar
  7. 7.
    Costa, V.G., Barrientos, R.J., Marín, M., Bonacic, C.: Scheduling metric-space queries processing on multi-core processors. In: Danelutto, M., Bourgeois, J., Gross, T. (eds.) PDP, pp. 187–194. IEEE Computer Society (2010)Google Scholar
  8. 8.
    Marin, M., Ferrarotti, F., Gil-Costa, V.: Distributing a metric-space search index onto processors. In: 39th International Conference on Parallel Processing, ICPP 2010, pp. 433–442. IEEE Computer Society, San Diego (2010)CrossRefGoogle Scholar
  9. 9.
    Navarro, G., Uribe-Paredes, R.: Fully dynamic metric access methods based on hyperplane partitioning. Information Systems 36(4), 734–747 (2011)CrossRefGoogle Scholar
  10. 10.
    Novak, D., Batko, M., Zezula, P.: Generic similarity search engine demonstrated by an image retrieval application. In: 32nd ACM SIGIR Conference on Research and Development in Information Retrieval, p. 840. ACM, Boston (2009)CrossRefGoogle Scholar
  11. 11.
    Uribe-Paredes, R., Arias, E., Sánchez, J.L., Cazorla, D., Valero-Lara, P.: Improving the performance for the range search on metric spaces using a multi-GPU platform. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA 2012, Part II. LNCS, vol. 7447, pp. 442–449. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Zezula, P.: Multi feature indexing network mufin for similarity search applications. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 77–87. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  13. 13.
    Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach. Advances in Database Systems, vol. 32. Springer (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ricardo J. Barrientos
    • 1
  • José I. Gómez
    • 1
  • Christian Tenllado
    • 1
  • Manuel Prieto Matias
    • 1
  • Pavel Zezula
    • 2
  1. 1.Architecture Department of Computers and Automatic, ArTeCS GroupComplutense University of MadridMadridEspaña
  2. 2.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations