Advertisement

Full Domain Hash from (Leveled) Multilinear Maps and Identity-Based Aggregate Signatures

  • Susan Hohenberger
  • Amit Sahai
  • Brent Waters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8042)

Abstract

In this work, we explore building constructions with full domain hash structure, but with standard model proofs that do not employ the random oracle heuristic. The launching point for our results will be the utilization of a “leveled” multilinear map setting for which Garg, Gentry, and Halevi (GGH) recently gave an approximate candidate. Our first step is the creation of a standard model signature scheme that exhibits the structure of the Boneh, Lynn and Shacham signatures. In particular, this gives us a signature that admits unrestricted aggregation.

We build on this result to offer the first identity-based aggregate signature scheme that admits unrestricted aggregation. In our construction, an arbitrary-sized set of signatures on identity/message pairs can be aggregated into a single group element, which authenticates the entire set. The identity-based setting has important advantages over regular aggregate signatures in that it eliminates the considerable burden of having to store, retrieve or verify a set of verification keys, and minimizes the total cryptographic overhead that must be attached to a set of signer/message pairs. While identity-based signatures are trivial to achieve, their aggregate counterparts are not. To the best of our knowledge, no prior candidate for realizing unrestricted identity-based aggregate signatures exists in either the standard or random oracle models.

A key technical idea underlying these results is the realization of a hash function with a Naor-Reingold-type structure that is publicly computable using repeated application of the multilinear map. We present our results in a generic “leveled” multilinear map setting and then show how they can be translated to the GGH graded algebras analogue of multilinear maps.

References

  1. 1.
    Ahn, J.H., Green, M., Hohenberger, S.: Synchronized aggregate signatures: new definitions, constructions and applications. In: ACM Conference on Computer and Communications Security, pp. 473–484 (2010)Google Scholar
  2. 2.
    Bellare, M., Namprempre, C., Neven, G.: Unrestricted aggregate signatures. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 411–422. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  4. 4.
    Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Boldyreva, A., Gentry, C., O’Neill, A., Yum, D.H.: Ordered multisignatures and identity-based sequential aggregate signatures, with applications to secure routing. In: ACM Conference on Computer and Communications Security, pp. 276–285 (2007)Google Scholar
  6. 6.
    Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. SIAM J. Comput. 32(3), 586–615 (2001); extended abstract in: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–615. Springer, Heidelberg (2001)Google Scholar
  10. 10.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signatures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Silverberg, A.: Applications of multilinear forms to cryptography. IACR Cryptology ePrint Archive, 80 (2002)Google Scholar
  13. 13.
    Brogle, K., Goldberg, S., Reyzin, L.: Sequential aggregate signatures with lazy verification from trapdoor permutations - (extended abstract). In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 644–662. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited. J. ACM 51(4), 557–594 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Chi, Y.-J., Oliveira, R., Zhang, L.: Cyclops: The Internet AS-level Observatory. In: ACM SIGCOMM CCR (2008)Google Scholar
  17. 17.
    Dodis, Y., Haitner, I., Tentes, A.: On the instantiability of hash-and-sign RSA signatures. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 112–132. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Dodis, Y., Oliveira, R., Pietrzak, K.: On the generic insecurity of the full domain hash. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 449–466. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Gentry, C., Ramzan, Z.: Identity-based aggregate signatures. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 257–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  24. 24.
    Hofheinz, D., Kiltz, E.: Programmable hash functions and their applications. J. Cryptology 25(3), 484–527 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Hohenberger, S., Sahai, A., Waters, B.: Full domain hash from (leveled) multilinear maps and identity-based aggregate signatures. Full version available at the Cryptology ePrint Archive (2013), http://eprint.iacr.org/
  26. 26.
    Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Lu, S., Ostrovsky, R., Sahai, A., Shacham, H., Waters, B.: Sequential aggregate signatures and multisignatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 465–485. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Lysyanskaya, A., Micali, S., Reyzin, L., Shacham, H.: Sequential aggregate signatures from trapdoor permutations. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 74–90. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended abstract. In: ACM Conference on Computer and Communications Security, pp. 245–254 (2001)Google Scholar
  30. 30.
    Naor, M., Reingold, O.: Constructing pseudo-random permutations with a prescribed structure. J. Cryptology 15(2), 97–102 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Neven, G.: Efficient sequential aggregate signed data. IEEE Transactions on Information Theory 57(3), 1803–1815 (2011)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ohta, K., Okamoto, T.: A digital multisignature scheme based on the Fiat-Shamir scheme. In: Matsumoto, T., Imai, H., Rivest, R.L. (eds.) ASIACRYPT 1991. LNCS, vol. 739, pp. 139–148. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  33. 33.
    Okamoto, T.: A digital multisignature schema using bijective public-key cryptosystems. ACM Trans. Comput. Syst. 6(4), 432–441 (1988)CrossRefzbMATHGoogle Scholar
  34. 34.
    Rückert, M., Schröder, D.: Aggregate and verifiably encrypted signatures from multilinear maps without random oracles. In: Park, J.H., Chen, H.-H., Atiquzzaman, M., Lee, C., Kim, T.-h., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 750–759. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  35. 35.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  36. 36.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Waters, B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Susan Hohenberger
    • 1
  • Amit Sahai
    • 2
  • Brent Waters
    • 3
  1. 1.Johns Hopkins UniversityUSA
  2. 2.UCLAUSA
  3. 3.University of Texas at AustinUSA

Personalised recommendations