On the Security of the TLS Protocol: A Systematic Analysis

  • Hugo Krawczyk
  • Kenneth G. Paterson
  • Hoeteck Wee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8042)

Abstract

TLS is the most widely-used cryptographic protocol on the Internet. It comprises the TLS Handshake Protocol, responsible for authentication and key establishment, and the TLS Record Protocol, which takes care of subsequent use of those keys to protect bulk data. In this paper, we present the most complete analysis to date of the TLS Handshake protocol and its application to data encryption (in the Record Protocol). We show how to extract a key-encapsulation mechanism (KEM) from the TLS Handshake Protocol, and how the security of the entire TLS protocol follows from security properties of this KEM when composed with a secure authenticated encryption scheme in the Record Protocol. The security notion we achieve is a variant of the ACCE notion recently introduced by Jager et al. (Crypto ’12). Our approach enables us to analyse multiple different key establishment methods in a modular fashion, including the first proof of the most common deployment mode that is based on RSA PKCS #1v1.5 encryption, as well as Diffie-Hellman modes. Our results can be applied to settings where mutual authentication is provided and to the more common situation where only server authentication is applied.

References

  1. 1.
    Abdalla, M., Bellare, M., Rogaway, P.: The oracle diffie-hellman assumptions and an analysis of DHIES. In: CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    AlFardan, N., Paterson, K.G.: Plaintext-recovery attacks against Datagram TLS. In: Network and Distributed System Security Symposium (NDSS 2012) (2012)Google Scholar
  3. 3.
    AlFardan, N., Paterson, K.G.: Lucky thirteen: Breaking the TLS and DTLS record protocols. In: IEEE Symposium on Security and Privacy (2013), www.isg.rhul.ac.uk/tls/Lucky13.html
  4. 4.
    AlFardan, N., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.: On the security of RC4 in TLS and WPA. In: USENIX Security Symposium (2013), www.isg.rhul.ac.uk/tls
  5. 5.
    Bard, G.V.: The vulnerability of SSL to chosen plaintext attack. IACR Cryptology ePrint Archive, 2004:11 (2004)Google Scholar
  6. 6.
    Bard, G.V.: A challenging but feasible blockwise-adaptive chosen-plaintext attack on SSL. In: SECRYPT, pp. 99–109 (2006)Google Scholar
  7. 7.
    Bardou, R., Focardi, R., Kawamoto, Y., Simionato, L., Steel, G., Tsay, J.-K.: Efficient padding oracle attacks on cryptographic hardware. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 608–625. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  9. 9.
    Bhargavan, K., Fournet, C., Corin, R., Zalinescu, E.: Verified cryptographic implementations for TLS. ACM Trans. Inf. Syst. Secur. 15(1), 3 (2012)CrossRefGoogle Scholar
  10. 10.
    Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.-Y.: Implementing TLS with verified cryptographic security. In: IEEE Symposium on Security and Privacy (2013), http://mitls.rocq.inria.fr/
  11. 11.
    Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Moeller, B.: Elliptic Curve Cryptography (ECC) Cipher Suites for Transport Layer Security, TLS (May 2006), http://www.rfc-editor.org/rfc/rfc4492.txt
  12. 12.
    Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Brzuska, C., Fischlin, M., Smart, N., Warinschi, B., Williams, S.: Less is more: Relaxed yet composable security notions for key exchange. Cryptology ePrint Archive, Report 2012/242 (2012)Google Scholar
  14. 14.
    Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 453–474. Springer, Heidelberg (2001), See also Cryptology ePrint Archive, Report 2001/040CrossRefGoogle Scholar
  15. 15.
    Canetti, R., Krawczyk, H.: Universally composable notions of key exchange and secure channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 337–351. Springer, Heidelberg (2002), See also Cryptology ePrint Archive, Report 2002/059CrossRefGoogle Scholar
  16. 16.
    Canvel, B., Hiltgen, A.P., Vaudenay, S., Vuagnoux, M.: Password Interception in a SSL/TLS Channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 583–599. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.2 (August 2008), http://www.rfc-editor.org/rfc/rfc5246.txt
  18. 18.
    Duong, T., Rizzo, J.: Here come the ⊕ Ninjas (2011) (unpublished manuscript)Google Scholar
  19. 19.
    Duong, T., Rizzo, J.: The CRIME attack. Presentation at Ekoparty Security Conference (2012), http://www.ekoparty.org/eng/2012/juliano-rizzo.php
  20. 20.
    Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgärtner, L., Freisleben, B.: Why Eve and Mallory love Android: An analysis of Android SSL (in)security. In: ACM CCS, pp. 50–61 (2012)Google Scholar
  21. 21.
    Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The most dangerous code in the world: Validating SSL certificates in non-browser software. In: ACM CCS, pp. 38–49 (2012)Google Scholar
  22. 22.
    He, C., Sundararajan, M., Datta, A., Derek, A., Mitchell, J.C.: A modular correctness proof of IEEE 802.11i and TLS. In: ACM CCS, pp. 2–15 (2005)Google Scholar
  23. 23.
    Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  24. 24.
    Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the standard model. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 273–293. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Jonsson, J., Kaliski Jr., B.S.: On the security of RSA encryption in TLS. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 127–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Kaliski, B.: PKCS#1: RSA Encryption Version 1.5 (March 1998), http://www.rfc-editor.org/rfc/rfc2313.txt
  27. 27.
    Klíma, V., Pokorný, O., Rosa, T.: Attacking RSA-based sessions in SSL/TLS. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 426–440. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  28. 28.
    Krawczyk, H.: The order of encryption and authentication for protecting communications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 310–331. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  29. 29.
    Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: A systematic analysis. In: Canetti, R., Garay, J. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 425–444. Springer, Heidelberg (2013); Cryptology ePrint Archive, Report 2013/339Google Scholar
  30. 30.
    Mavrogiannopoulos, N., Vercauteren, F., Velichkov, V., Preneel, B.: A cross-protocol attack on the TLS protocol. In: ACM CCS, pp. 62–72 (2012)Google Scholar
  31. 31.
    Modadugu, N., Rescorla, E.: The Design and Implementation of Datagram TLS. In: NDSS. The Internet Society (2004) ISBN 1-891562-18-5, 1-891562-17-7Google Scholar
  32. 32.
    Moeller, B.: Security of CBC ciphersuites in SSL/TLS: Problems and countermeasures (May 2004) (unpublished manuscript), http://www.openssl.org/~bodo/tls-cbc.txt
  33. 33.
    Morrissey, P., Smart, N.P., Warinschi, B.: A modular security analysis of the TLS handshake protocol. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 55–73. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    Okamoto, T., Pointcheval, D.: REACT: Rapid enhanced-security asymmetric cryptosystem transform. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 159–175. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  35. 35.
    Paterson, K.G., Ristenpart, T., Shrimpton, T.: Tag size does matter: Attacks and proofs for the TLS record protocol. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 372–389. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  36. 36.
    Paulson, L.C.: Inductive analysis of the internet protocol TLS. ACM Trans. Inf. Syst. Secur. 2(3), 332–351 (1999)CrossRefGoogle Scholar
  37. 37.
    Rescorla, E., Modadugu, N.: Datagram Transport Layer Security (April 2006), http://www.rfc-editor.org/rfc/rfc4347.txt
  38. 38.
    Rescorla, E., Ray, M., Dispensa, S., Oskov, N.: Transport Layer Security (TLS) Renegotiation Indication Extension. In: RFC 5746 (Proposed Standard) (February 2010), http://www.ietf.org/rfc/rfc5746.txt
  39. 39.
    Shoup, V.: On formal models for secure key exchange. Cryptology ePrint Archive. Report 1999/012 (1999), http://eprint.iacr.org/
  40. 40.
    Vaudenay, S.: Security Flaws Induced by CBC Padding - Applications to SSL, IPSEC, WTLS... In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 534–546. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  41. 41.
    Wagner, D., Schneier, B.: Analysis of the SSL 3.0 protocol. In: USENIX Workshop on Electronic Commerce, pp. 29–40 (1996)Google Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Hugo Krawczyk
    • 1
  • Kenneth G. Paterson
    • 2
  • Hoeteck Wee
    • 3
  1. 1.IBM ResearchUSA
  2. 2.Royal Holloway, University of LondonUK
  3. 3.George Washington UniversityUSA

Personalised recommendations