Construction of Differential Characteristics in ARX Designs Application to Skein

  • Gaëtan Leurent
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8042)

Abstract

In this paper, we study differential attacks against ARX schemes. We build upon the generalized characteristics of De Cannière and Rechberger and the multi-bit constraints of Leurent.

Our main result is an algorithm to build complex non-linear differential characteristics for ARX constructions, that we applied to reduced versions of the hash function Skein. We present several characteristics for use in various attack scenarios: on the one hand we show attacks with a relatively low complexity, in relatively strong settings; and on the other hand weaker distinguishers reaching more rounds. Our most notable results are practical free-start and semi-free-start collision attacks for 20 rounds and 12 rounds of Skein-256, respectively. Since the full version of Skein-256 has 72 rounds, this result confirms the large security margin of the design.

These results are some of the first examples of complex differential trails built for pure ARX designs. We believe this is an important work to assess the security those functions against differential cryptanalysis. Our tools are publicly available from the ARXtools webpage.

Keywords

Symmetric ciphers Hash functions ARX Generalized characteristics Differential attacks Skein 

References

  1. 1.
    Aumasson, J.-P., Bernstein, D.J.: SipHash: A fast short-input PRF. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 489–508. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  2. 2.
    Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and Related-Key Attack on the Full AES-256. In: [12], pp. 231–249Google Scholar
  3. 3.
    Canteaut, A. (ed.): FSE 2012. LNCS, vol. 7549. Springer, Heidelberg (2012)MATHGoogle Scholar
  4. 4.
    Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Cramer, R. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg (2005)MATHGoogle Scholar
  6. 6.
    De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    den Boer, B., Bosselaers, A.: Collisions for the Compression Function of MD-5. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 293–304. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  8. 8.
    Dunkelman, O., Khovratovich, D.: Iterative differentials, symmetries, and message modification in BLAKE-256. In: ECRYPT2 Hash Workshop (2011)Google Scholar
  9. 9.
    Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein hash function family. Submission to NIST (2008/2010)Google Scholar
  10. 10.
    Fouque, P.A., Leurent, G., Nguyen, P.: Automatic Search of Differential Path in MD4. In: ECRYPT Hash Workshop (2007), http://eprint.iacr.org/2007/206
  11. 11.
    Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Full Key-Recovery Attacks on HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Halevi, S. (ed.): CRYPTO 2009. LNCS, vol. 5677. Springer, Heidelberg (2009)MATHGoogle Scholar
  13. 13.
    Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family. In: [3], pp. 244–263Google Scholar
  14. 14.
    Leurent, G.: Analysis of Differential Attacks in ARX Constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 226–243. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  15. 15.
    Li, J., Isobe, T., Shibutani, K.: Converting meet-in-the-middle preimage attack into pseudo collision attack: Application to SHA-2. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 264–286. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Mendel, F., Nad, T., Schläffer, M.: Finding collisions for round-reduced SM3. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 174–188. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  17. 17.
    Mendel, F., Nad, T., Schläffer, M.: Finding SHA-2 Characteristics: Searching through a Minefield of Contradictions. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 288–307. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Mendel, F., Nad, T., Schläffer, M.: Collision Attacks on the Reduced Dual-Stream Hash Function RIPEMD-128. In: [3], pp. 226–243Google Scholar
  19. 19.
    Mendel, F., Rechberger, C., Schläffer, M.: MD5 Is Weaker Than Weak: Attacks on Concatenated Combiners. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 144–161. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack: Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  21. 21.
    Mouha, N., De Cannière, C., Indesteege, S., Preneel, B.: Finding Collisions for a 45-Step Simplified HAS-V. In: Youm, H.Y., Yung, M. (eds.) WISA 2009. LNCS, vol. 5932, pp. 206–225. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Mouha, N., Velichkov, V., De Cannière, C., Preneel, B.: The Differential Analysis of S-Functions. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 36–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  23. 23.
    Peyrin, T.: Analyse de fonctions de hachage cryptographiques. PhD thesis, University of Versailles (2008)Google Scholar
  24. 24.
    Schläffer, M., Oswald, E.: Searching for Differential Paths in MD4. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 242–261. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Stevens, M., Lenstra, A.K., de Weger, B.: Chosen-Prefix Collisions for MD5 and Colliding X.509 Certificates for Different Identities. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 1–22. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Stevens, M., Sotirov, A., Appelbaum, J., Lenstra, A.K., Molnar, D., Osvik, D.A., de Weger, B.: Short Chosen-Prefix Collisions for MD5 and the Creation of a Rogue CA Certificate. In: [12], pp. 55–69Google Scholar
  27. 27.
    Su, B., Wu, W., Wu, S., Dong, L.: Near-Collisions on the Reduced-Round Compression Functions of Skein and BLAKE. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS, vol. 6467, pp. 124–139. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  28. 28.
    Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions MD4 and RIPEMD. In: [5], pp. 1–18Google Scholar
  29. 29.
    Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: [5], pp. 19–35Google Scholar
  31. 31.
    Yu, H., Chen, J., Jia, K., Wang, X.: Near-Collision Attack on the Step-Reduced Compression Function of Skein-256. IACR Cryptology ePrint Archive, Report 2011/148 (2011)Google Scholar
  32. 32.
    Yu, H., Chen, J., Wang, X.: The Boomerang Attacks on the Round-Reduced Skein-512. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 287–303. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  33. 33.
    Yu, H., Chen, J., Wang, X.: Partial-Collision Attack on the Round-Reduced Compression Function of Skein-256. In: Moriai, S. (ed.) FSE. LNCS, Springer (2013)Google Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  • Gaëtan Leurent
    • 1
  1. 1.UCL Crypto GroupBelgium

Personalised recommendations