Exploring the Relations between Fault Sensitivity and Power Consumption

  • Yang Li
  • Sho Endo
  • Nicolas Debande
  • Naofumi Homma
  • Takafumi Aoki
  • Thanh-Ha Le
  • Jean-Luc Danger
  • Kazuo Ohta
  • Kazuo Sakiyama
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7864)

Abstract

This paper qualitatively explores the relations between two kinds of side-channel leakages, i.e., the fault sensitivity (FS) and the power consumption. The FS is a relatively new active side-channel leakage, while the power consumption is one of the earliest researched passive side-channel leakage. These two side-channels are closely related with regard to both the security evaluation and the countermeasure proposal. This paper experimentally answers the following important issues such as the relationship between these two side-channels, whether they share the same leakage function and whether they can be protected by the same countermeasure. Based on two FPGA AES implementations without countermeasures, we first confirm a high correlation between the power consumption and the FS. Then, we construct the leakage profiles for the FS and the power consumption to explain the detailed relations between them. We also confirm a successful key recovery using the FS profile as the leakage model for power consumption. Based on these discoveries, we believe that FSA can be used as an evaluation tool to find the first-order leakage with less data-complexity, and it is more reasonable to achieve the countermeasures against FSA and power analysis from different design levels.

Keywords

Side-channel attacks fault sensitivity power consumption AES 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DPA contest website, http://www.dpacontest.org/home/
  2. 2.
    Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Endo, S., Li, Y., Homma, N., Sakiyama, K., Ohta, K., Aoki, T.: An efficient countermeasure against fault sensitivity analysis using configurable delay blocks. In: Bertoni, G., Gierlichs, B. (eds.) FDTC, pp. 95–102. IEEE (2012)Google Scholar
  5. 5.
    Endo, S., Sugawara, T., Homma, N., Aoki, T., Satoh, A.: An on-chip glitchy-clock generator for testing fault injection attacks. Journal of Cryptographic Engineering 1(4), 265–270 (2011)CrossRefGoogle Scholar
  6. 6.
    Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic Analysis: Concrete Results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  9. 9.
    Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Li, Y., Nakatsu, D., Li, Q., Ohta, K., Sakiyama, K.: Clockwise collision analysis – overlooked side-channel leakage inside your measurements. Cryptology ePrint Archive, Report 2011/579 (2011), http://eprint.iacr.org/
  11. 11.
    Li, Y., Ohta, K., Sakiyama, K.: Revisit fault sensitivity analysis on WDDL-AES. In: HOST, pp. 148–153. IEEE Computer Society (2011)Google Scholar
  12. 12.
    Li, Y., Ohta, K., Sakiyama, K.: New Fault-Based Side-Channel Attack Using Fault Sensitivity. IEEE Transactions on Information Forensics and Security 7(1), 88–97 (2012)CrossRefGoogle Scholar
  13. 13.
    Li, Y., Ohta, K., Sakiyama, K.: Toward effective countermeasures against an improved fault sensitivity analysis. IEICE Transactions 95-A(1), 234–241 (2012)Google Scholar
  14. 14.
    Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault sensitivity analysis. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 320–334. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Mangard, S., Oswald, E., Popp, T.: Power analysis attacks - revealing the secrets of smart cards. Springer (2007)Google Scholar
  16. 16.
    Moradi, A., Mischke, O., Paar, C., Li, Y., Ohta, K., Sakiyama, K.: On the Power of Fault Sensitivity Analysis and Collision Side-Channel Attacks in a Combined Setting. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 292–311. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Morioka, S., Satoh, A.: An Optimized S-Box Circuit Architecture for Low Power AES Design. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 172–186. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Information Security (RCIS). Side-channel Attack Standard Evaluation Board (SASEBO), http://staff.aist.go.jp/akashi.satoh/SASEBO/en/index.html
  19. 19.
    Nikova, S., Rechberger, C., Rijmen, V.: Threshold Implementations Against Side-Channel Attacks and Glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Research Center for Information Security (RCIS) of National Institute of Advanced Industrial Science and Technology. SASEBO project overviewGoogle Scholar
  21. 21.
    Saeki, M., Suzuki, D., Shimizu, K., Satoh, A.: A Design Methodology for a DPA-Resistant Cryptographic LSI with RSL Techniques. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 189–204. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side Channel Cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Standaert, F.-X., Archambeau, C.: Using Subspace-Based Template Attacks to Compare and Combine Power and Electromagnetic Information Leakages. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Standaert, F.-X., Malkin, T., Yung, M.: A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Tiri, K., Verbauwhede, I.: A Logic Level Design Methodology for a Secure DPA ResistantASIC or FPGA Implementation. In: DATE, pp. 246–251. IEEE Computer Society (2004)Google Scholar
  26. 26.
    Veyrat-Charvillon, N., Standaert, F.-X.: Mutual information analysis: How, when and why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yang Li
    • 1
  • Sho Endo
    • 2
  • Nicolas Debande
    • 3
    • 4
  • Naofumi Homma
    • 2
  • Takafumi Aoki
    • 2
  • Thanh-Ha Le
    • 4
  • Jean-Luc Danger
    • 3
  • Kazuo Ohta
    • 1
  • Kazuo Sakiyama
    • 1
  1. 1.The University of Electro-CommunicationsJapan
  2. 2.Tohoku UniversityJapan
  3. 3.TELECOM ParisTechFrance
  4. 4.MorphoFrance

Personalised recommendations