A Comparison of Two Dual Methods for Discrete Optimal Transport

  • Quentin Mérigot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8085)

Abstract

The goal of this expository article is to present and compare two dual methods that have been proposed independently for computing solutions of the discrete or semi-discrete instances of optimal transport.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aurenhammer, F., Hoffmann, F., Aronov, B.: Minkowski-type theorems and least-squares clustering. Algorithmica 20(1), 61–76 (1998)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the monge-kantorovich mass transfer problem. Numerische Mathematik 84(3), 375–393 (2000)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Benamou, J.-D., Froese, B., Oberman, A.: Numerical solution of the second boundary value problem for the Elliptic Monge-Ampère equation, Rapport de recherche (2012)Google Scholar
  4. 4.
    Bertsekas, D.P.: A new algorithm for the assignment problem. Mathematical Programming 21(1), 152–171 (1981)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Bertsekas, D.P., Eckstein, J.: Dual coordinate step methods for linear network flow problems. Mathematical Programming 42(1), 203–243 (1988)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Burkard, R.E., Dell’Amico, M., Martello, S.: Assignment problems. Society for Industrial Mathematics (2009)Google Scholar
  7. 7.
    Caffarelli, L., Kochengin, S., Oliker, V.I.: On the numerical solution of the problem of reflector design with given far-field scattering data. Contemporary Mathematics 226, 13–32 (1999)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cullen, M.J.P., Purser, R.J.: An extended lagrangian theory of semi-geostrophic frontogenesis. Journal of Atmospheric Sciences 41, 1477–1497 (1984)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM (JACM) 19(2), 248–264 (1972)MATHCrossRefGoogle Scholar
  10. 10.
    Kitagawa, J.: An iterative scheme for solving the optimal transportation problem, arXiv preprint arXiv:1208.5172 (2012)Google Scholar
  11. 11.
    Loeper, G., Rapetti, F.: Numerical solution of the monge–ampère equation by a newton’s algorithm. Comptes Rendus Mathematique 340(4), 319–324 (2005)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Mérigot, Q.: A multiscale approach to optimal transport. In: Computer Graphics Forum, vol. 30, pp. 1583–1592. Wiley Online Library (2011)Google Scholar
  13. 13.
    Oliker, V.I., Prussner, L.D.: On the numerical solution of the equation \(\frac{\partial^2 z}{\partial x} \frac{\partial^2 z}{\partial y^2} - \left(\frac{\partial^2 z}{\partial x\partial y}\right)^2=f\). Numerische Mathematik 54(3), 271–293 (1988)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Quentin Mérigot
    • 1
  1. 1.Laboratoire Jean KuntzmannUniversité de Grenoble and CNRSFrance

Personalised recommendations