On the Identification of Discretization Orders for Distance Geometry with Intervals

  • Antonio Mucherino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8085)


The discretization of instances of the distance geometry problem is possible when some particular assumptions are satisfied. When molecules are concerned, such assumptions strongly depend on the order in which the atoms of the molecule are considered. When the chemical composition of the molecule is known, as it is the case for the proteins, a general order can be identified for an entire class of instances. However, when this information is not available, ad-hoc orders need to be found for every considered instance. In this paper, the problem of finding discretization orders for distance geometry problems with intervals is formalized, and an algorithm for its solution is presented.


Protein Backbone Reference Distance Distance Geometry Exact Distance Weighted Undirected Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alipanahi, B., Krislock, N., Ghodsi, A., Wolkowicz, H., Donaldson, L., Li, M.: Determining Protein Structures from NOESY Distance Constraints by Semidefinite Programming. Journal of Computational Biology 20(4), 296–310 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Biswas, P., Lian, T., Wang, T., Ye, Y.: Semidefinite Programming based Algorithms for Sensor Network Localization. ACM Transactions in Sensor Networks 2, 188–220 (2006)CrossRefGoogle Scholar
  3. 3.
    Carvalho, R.S., Lavor, C., Protti, F.: Extending the Geometric Build-Up Algorithm for the Molecular Distance Geometry Problem. Information Processing Letters 108, 234–237 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. John Wiley & Sons, New York (1988)zbMATHGoogle Scholar
  5. 5.
    Costa, V., Mucherino, A., Lavor, C., Carvalho, L.M., Maculan, N.: On Suitable Orders for Discretizing Molecular Distance Geometry Problems related to Protein Side Chains. In: IEEE Conference Proceedings, Federated Conference on Computer Science and Information Systems (FedCSIS 2012), Workshop on Computational Optimization (WCO 2012), Wroclaw, Poland, pp. 397–402 (2012)Google Scholar
  6. 6.
    Dong, Q., Wu, Z.: A linear-time Algorithm for Solving the Molecular Distance Geometry Problem with Exact Inter-Atomic Distances. Journal of Global Optimization 22, 365–375 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dong, Q., Wu, Z.: A Geometric Build-Up Algorithm for Solving the Molecular Distance Geometry Problem with Sparse Distance Data. Journal of Global Optimization 26, 321–333 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Krislock, N., Wolkowicz, H.: Explicit Sensor Network Localization using Semidefinite Representations and Facial Reductions. SIAM Journal on Optimization 20, 2679–2708 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Lavor, C., Lee, J., John, A.L.-S., Liberti, L., Mucherino, A., Sviridenko, M.: Discretization Orders for Distance Geometry Problems. Optimization Letters 6(4), 783–796 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent Advances on the Discretizable Molecular Distance Geometry Problem. European Journal of Operational Research 219, 698–706 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Lavor, C., Liberti, L., Mucherino, A.: The interval, Branch-and-Prune Algorithm for the Discretizable Molecular Distance Geometry Problem with Inexact Distances. To appear in Journal of Global Optimization (2013)Google Scholar
  12. 12.
    Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean Distance Geometry and Applications. To appear in SIAM Review (2013)Google Scholar
  13. 13.
    Malliavin, T.E., Mucherino, A., Nilges, M.: Distance Geometry in Structural Biology: New Perspectives. In: [17], pp. 329–350 (2013)Google Scholar
  14. 14.
    Moré, J.J., Wu, Z.: Global Continuation for Distance Geometry Problems. SIAM Journal on Optimization 7, 814–836 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Moré, J.J., Wu, Z.: Distance Geometry Optimization for Protein Structures. Journal of Global Optimimization 15, 219–223 (1999)zbMATHCrossRefGoogle Scholar
  16. 16.
    Mucherino, A., Lavor, C., Liberti, L.: The Discretizable Distance Geometry Problem. Optimization Letters 6(8), 1671–1686 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry: Theory, Methods and Applications, 410 pages. Springer (2013)Google Scholar
  18. 18.
    Mucherino, A., Lavor, C., Malliavin, T., Liberti, L., Nilges, M., Maculan, N.: Influence of Pruning Devices on the Solution of Molecular Distance Geometry Problems. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 206–217. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Antonio Mucherino
    • 1
  1. 1.IRISAUniversity of Rennes 1RennesFrance

Personalised recommendations