Cavity-Enhanced Direct Frequency Comb Spectroscopy

  • P. Masłowski
  • K. C. Cossel
  • A. Foltynowicz
  • J. Ye
Part of the Springer Series in Optical Sciences book series (SSOS, volume 179)


In less than fifteen years since the development of the first optical frequency comb (OFC), the device has revolutionized numerous research fields. In spectroscopy, the unique properties of the OFC spectrum enable simultaneous acquisition of broadband spectra while also providing high spectral resolution. Due to the regular structure of its spectrum, an OFC can be efficiently coupled to an optical enhancement cavity, resulting in vastly increased effective interaction length with the sample and absorption sensitivities as low as 1.3×10−11 cm−1 Hz−1/2 per spectral element. This technique, called cavity-enhanced direct frequency comb spectroscopy (CE-DFCS), provides ultra-sensitive absorption measurements simultaneously over a wide spectral range and with acquisition times shorter than a second.

This chapter introduces the main ideas behind CE-DFCS including properties of various comb sources, methods of coupling and locking the OFC to the enhancement cavity, and schemes for broadband, simultaneous detection. Examples of experimental implementations are given, and a survey of applications taking advantage of the rapid, massively parallel acquisition is presented.


Spectral Element Free Spectral Range Frequency Comb Breath Analysis Absorption Sensitivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully thank many of our colleagues who have contributed to the work described in this review. They are F. Adler, T. Allison, T. Ban, C. Benko, B. Bjork, T. Briles, A. Cingöz, E. Cornell, S. Diddams, M. Fermann, A. Fleisher, M. Golkowski, J. Hall, I. Hartl, L.-S. Ma, M. Martin, J. Repine, A. Ruehl, L. Sinclair, M. Thorpe, and D. Yost. The development of CE-DFCS has been supported by NIST, AFOSR, DARPA, NSF, DTRA, and Agilent.


  1. 1.
    S.A. Diddams et al., Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84(22), 5102–5105 (2000) ADSGoogle Scholar
  2. 2.
    R. Holzwarth et al., Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85(11), 2264–2267 (2000) ADSGoogle Scholar
  3. 3.
    T. Udem, R. Holzwarth, T.W. Hansch, Optical frequency metrology. Nature 416(6877), 233–237 (2002) ADSGoogle Scholar
  4. 4.
    S.T. Cundiff, J. Ye, Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75(1), 325–342 (2003) ADSGoogle Scholar
  5. 5.
    J. Ye, S.T. Cundiff (eds.), Femtosecond Optical Frequency Comb: Principle, Operation, and Applications (Springer, Berlin, 2004) Google Scholar
  6. 6.
    T.W. Hansch, Nobel lecture: passion for precision. Rev. Mod. Phys. 78(4), 1297–1309 (2006) ADSGoogle Scholar
  7. 7.
    J.L. Hall, Nobel lecture: defining and measuring optical frequencies. Rev. Mod. Phys. 78(4), 1279–1295 (2006) ADSGoogle Scholar
  8. 8.
    S.A. Diddams, The evolving optical frequency comb. J. Opt. Soc. Am. B, Opt. Phys. 27(11), B51–B62 (2010) ADSGoogle Scholar
  9. 9.
    L.S. Ma et al., Optical frequency synthesis and comparison with uncertainty at the 10−19 level. Science 303(5665), 1843–1845 (2004) ADSGoogle Scholar
  10. 10.
    A. Bartels et al., Stabilization of femtosecond laser frequency combs with subhertz residual linewidths. Opt. Lett. 29(10), 1081–1083 (2004) ADSGoogle Scholar
  11. 11.
    T.R. Schibli et al., Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nat. Photonics 2(6), 355–359 (2008) ADSGoogle Scholar
  12. 12.
    M.J. Martin et al., Testing ultrafast mode-locking at microhertz relative optical linewidth. Opt. Express 17(2), 558–568 (2009) ADSGoogle Scholar
  13. 13.
    S.M. Foreman et al., Coherent optical phase transfer over a 32-km fiber with 1 s instability at 10−17. Phys. Rev. Lett. 99(15), 153601 (2007) ADSGoogle Scholar
  14. 14.
    S.M. Foreman et al., Remote transfer of ultrastable frequency references via fiber networks. Rev. Sci. Instrum. 78(2), 021101 (2007) ADSGoogle Scholar
  15. 15.
    A.D. Ludlow et al., Sr lattice clock at 1×10−16 fractional uncertainty by remote optical evaluation with a Ca clock. Science 319(5871), 1805–1808 (2008) ADSGoogle Scholar
  16. 16.
    K. Predehl et al., A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science 336(6080), 441–444 (2012) ADSGoogle Scholar
  17. 17.
    O. Lopez et al., Ultra-stable long distance optical frequency distribution using the Internet fiber network. Opt. Express 20(21), 23518–23526 (2012) ADSGoogle Scholar
  18. 18.
    A. Ruehl et al., Ultrabroadband coherent supercontinuum frequency comb. Phys. Rev. A 84(1), 011806(R) (2011) ADSGoogle Scholar
  19. 19.
    N.R. Newbury, Searching for applications with a fine-tooth comb. Nat. Photonics 5(4), 186–188 (2011) ADSGoogle Scholar
  20. 20.
    T. Steinmetz et al., Laser frequency combs for astronomical observations. Science 321(5894), 1335–1337 (2008) ADSGoogle Scholar
  21. 21.
    D.A. Braje et al., Astronomical spectrograph calibration with broad-spectrum frequency combs. Eur. Phys. J. D 48(1), 57–66 (2008) ADSGoogle Scholar
  22. 22.
    G.G. Ycas et al., Demonstration of on-sky calibration of astronomical spectra using a 25 GHz near-IR laser frequency comb. Opt. Express 20(6), 6631–6643 (2012) ADSGoogle Scholar
  23. 23.
    T. Wilken et al., A spectrograph for exoplanet observations calibrated at the centimetre-per-second level. Nature 485(7400), 611–614 (2012) ADSGoogle Scholar
  24. 24.
    D.F. Phillips et al., Calibration of an astrophysical spectrograph below 1 m/s using a laser frequency comb. Opt. Express 20(13), 13711–13726 (2012) ADSGoogle Scholar
  25. 25.
    S.J. Lee et al., Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators. Jpn. J. Appl. Phys. 40(8B), L878–L880 (2001) ADSGoogle Scholar
  26. 26.
    M. Golkowski et al., Hydrogen-peroxide-enhanced nonthermal plasma effluent for biomedical applications. IEEE Trans. Plasma Sci. 40(8), 1984–1991 (2012) ADSGoogle Scholar
  27. 27.
    A. Bartels et al., Femtosecond-laser-based synthesis of ultrastable microwave signals from optical frequency references. Opt. Lett. 30(6), 667–669 (2005) ADSGoogle Scholar
  28. 28.
    T.M. Fortier et al., Generation of ultrastable microwaves via optical frequency division. Nat. Photonics 5(7), 425–429 (2011) ADSGoogle Scholar
  29. 29.
    T. Udem et al., Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser. Phys. Rev. Lett. 82(18), 3568–3571 (1999) ADSGoogle Scholar
  30. 30.
    A. Marian et al., United time-frequency spectroscopy for dynamics and global structure. Science 306(5704), 2063–2068 (2004) ADSGoogle Scholar
  31. 31.
    M.C. Stowe et al., High resolution atomic coherent control via spectral phase manipulation of an optical frequency comb. Phys. Rev. Lett. 96(15), 153001 (2006) ADSGoogle Scholar
  32. 32.
    J. Ye et al., Accuracy comparison of absolute optical frequency measurement between harmonic-generation synthesis and a frequency-division femtosecond comb. Phys. Rev. Lett. 85(18), 3797–3800 (2000) ADSGoogle Scholar
  33. 33.
    T.W. Hansch et al., Precision spectroscopy of hydrogen and femtosecond laser frequency combs. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 363(1834), 2155–2163 (2005) ADSGoogle Scholar
  34. 34.
    G. Galzerano et al., Absolute frequency measurement of a water-stabilized diode laser at 1.384 μm by means of a fiber frequency comb. Appl. Phys. B, Lasers Opt. 102(4), 725–729 (2011) ADSGoogle Scholar
  35. 35.
    I. Galli et al., Molecular gas sensing below parts per trillion: radiocarbon-dioxide optical detection. Phys. Rev. Lett. 107(27), 270802 (2011) Google Scholar
  36. 36.
    J. Domyslawska et al., Cavity ring-down spectroscopy of the oxygen B-band with absolute frequency reference to the optical frequency comb. J. Chem. Phys. 136(2), 024201 (2012) ADSGoogle Scholar
  37. 37.
    I. Ricciardi et al., Frequency-comb-referenced singly-resonant OPO for sub-Doppler spectroscopy. Opt. Express 20(8), 9178–9186 (2012) ADSGoogle Scholar
  38. 38.
    M. Fischer et al., New limits on the drift of fundamental constants from laboratory measurements. Phys. Rev. Lett. 92(23), 230802 (2004) ADSGoogle Scholar
  39. 39.
    G. Casa et al., Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant. Phys. Rev. Lett. 100(20), 200801 (2008) ADSGoogle Scholar
  40. 40.
    C.G. Parthey et al., Improved measurement of the hydrogen 1S–2S transition frequency. Phys. Rev. Lett. 107(20), 203001 (2011) ADSGoogle Scholar
  41. 41.
    C. Lemarchand et al., Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy. New J. Phys. 13, 073028 (2011) ADSGoogle Scholar
  42. 42.
    A. Marian et al., Direct frequency comb measurements of absolute optical frequencies and population transfer dynamics. Phys. Rev. Lett. 95(2), 023001 (2005) ADSGoogle Scholar
  43. 43.
    M.J. Thorpe, J. Ye, Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B, Lasers Opt. 91(3–4), 397–414 (2008) ADSGoogle Scholar
  44. 44.
    F. Adler et al., Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem. 3(3), 175–205 (2010) Google Scholar
  45. 45.
    A. Foltynowicz et al., Optical frequency comb spectroscopy. Faraday Discuss. 150, 23–31 (2011) ADSGoogle Scholar
  46. 46.
    J.U. White, Long optical paths of large aperture. J. Opt. Soc. Am. 32(5), 285–288 (1942) ADSGoogle Scholar
  47. 47.
    D.R. Herriott, H.J. Schulte, Folded optical delay lines. Appl. Opt. 4(8), 883 (1965) ADSGoogle Scholar
  48. 48.
    F. Adler et al., Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express 18(21), 21861–21872 (2010) ADSGoogle Scholar
  49. 49.
    A.M. Zolot et al., Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Opt. Lett. 37(4), 638–640 (2012) ADSGoogle Scholar
  50. 50.
    E.R. Crosson et al., Pulse-stacked cavity ring-down spectroscopy. Rev. Sci. Instrum. 70(1), 4–10 (1999) ADSGoogle Scholar
  51. 51.
    T. Gherman, D. Romanini, Mode-locked cavity-enhanced absorption spectroscopy. Opt. Express 10(19), 1033–1042 (2002) ADSGoogle Scholar
  52. 52.
    R.J. Jones, J. Ye, Femtosecond pulse amplification by coherent addition in a passive optical cavity. Opt. Lett. 27(20), 1848–1850 (2002) ADSGoogle Scholar
  53. 53.
    M.J. Thorpe et al., Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311(5767), 1595–1599 (2006) ADSGoogle Scholar
  54. 54.
    G. Mejean, S. Kassi, D. Romanini, Measurement of reactive atmospheric species by ultraviolet cavity-enhanced spectroscopy with a mode-locked femtosecond laser. Opt. Lett. 33(11), 1231–1233 (2008) ADSGoogle Scholar
  55. 55.
    R. Grilli et al., Trace measurement of BrO at the ppt level by a transportable mode-locked frequency-doubled cavity-enhanced spectrometer. Appl. Phys. B, Lasers Opt. 107(1), 205–212 (2012) ADSGoogle Scholar
  56. 56.
    K.C. Cossel et al., Analysis of trace impurities in semiconductor gas via cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B, Lasers Opt. 100(4), 917–924 (2010) ADSGoogle Scholar
  57. 57.
    M.J. Thorpe et al., Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express 16(4), 2387–2397 (2008) ADSGoogle Scholar
  58. 58.
    L.C. Sinclair et al., Frequency comb velocity-modulation spectroscopy. Phys. Rev. Lett. 107(9), 093002 (2011) ADSGoogle Scholar
  59. 59.
    K.C. Cossel et al., Broadband velocity modulation spectroscopy of HfF+: towards a measurement of the electron electric dipole moment. Chem. Phys. Lett. 546, 1–11 (2012) ADSGoogle Scholar
  60. 60.
    M.J. Thorpe et al., Tomography of a supersonically cooled molecular jet using cavity-enhanced direct frequency comb spectroscopy. Chem. Phys. Lett. 468(1–3), 1–8 (2009) ADSGoogle Scholar
  61. 61.
    R.J. Jones et al., Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94(19), 193201 (2005) ADSGoogle Scholar
  62. 62.
    C. Gohle et al., A frequency comb in the extreme ultraviolet. Nature 436(7048), 234–237 (2005) ADSGoogle Scholar
  63. 63.
    A. Ozawa et al., High harmonic frequency combs for high resolution spectroscopy. Phys. Rev. Lett. 100(25), 253901 (2008) ADSGoogle Scholar
  64. 64.
    A. Cingoz et al., Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482(7383), 68–71 (2012) ADSGoogle Scholar
  65. 65.
    F. Keilmann, C. Gohle, R. Holzwarth, Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29(13), 1542–1544 (2004) ADSGoogle Scholar
  66. 66.
    K.A. Tillman et al., Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate. J. Opt. A, Pure Appl. Opt. 7(6), S408–S414 (2005) ADSGoogle Scholar
  67. 67.
    E. Sorokin et al., Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr(2+): ZnSe femtosecond laser. Opt. Express 15(25), 16540–16545 (2007) ADSGoogle Scholar
  68. 68.
    F. Adler et al., Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm. Opt. Lett. 34(9), 1330–1332 (2009) ADSGoogle Scholar
  69. 69.
    N. Leindecker et al., Broadband degenerate OPO for mid-infrared frequency comb generation. Opt. Express 19(7), 6304–6310 (2011) Google Scholar
  70. 70.
    N. Leindecker et al., Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt. Express 20(7), 7046–7053 (2012) ADSGoogle Scholar
  71. 71.
    T. Udem et al., Accurate measurement of large optical frequency differences with a mode-locked laser. Opt. Lett. 24(13), 881–883 (1999) ADSGoogle Scholar
  72. 72.
    D.J. Jones et al., Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288(5466), 635–639 (2000) ADSGoogle Scholar
  73. 73.
    A. Bartels, D. Heinecke, S.A. Diddams, 10-GHz self-referenced optical frequency comb. Science 326(5953), 681 (2009) ADSGoogle Scholar
  74. 74.
    T.M. Fortier, A. Bartels, S.A. Diddams, Octave-spanning Ti:sapphire laser with a repetition rate >1 GHz for optical frequency measurements and comparisons. Opt. Lett. 31(7), 1011–1013 (2006) ADSGoogle Scholar
  75. 75.
    J. Jiang et al., Fully stabilized, self-referenced thulium fiber frequency comb, in The European Conference on Lasers and Electro-Optics (Optical Society of America, Washington, 2011) Google Scholar
  76. 76.
    M.N. Cizmeciyan et al., Operation of femtosecond Kerr-lens mode-locked Cr:ZnSe lasers with different dispersion compensation methods. Appl. Phys. B, Lasers Opt. 106(4), 887–892 (2012) ADSGoogle Scholar
  77. 77.
    T.W. Neely, T.A. Johnson, S.A. Diddams, High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator. Opt. Lett. 36(20), 4020–4022 (2011) ADSGoogle Scholar
  78. 78.
    A. Ruehl et al., Widely-tunable mid-infrared frequency comb source based on difference frequency generation. Opt. Lett. 37(12), 2232–2234 (2012) ADSGoogle Scholar
  79. 79.
    M.E. Fermann, A. Galvanauskas, G. Sucha (eds.), Ultrafast Lasers: Technology and Applications (CRC Press, Boca Raton, 2002) Google Scholar
  80. 80.
    U. Keller, Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003) ADSGoogle Scholar
  81. 81.
    J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd edn. (Academic Press, New York, 2006) Google Scholar
  82. 82.
    U. Keller et al., Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state lasers. IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996) Google Scholar
  83. 83.
    C.C. Lee et al., Ultra-short optical pulse generation with single-layer graphene. J. Nonlinear Opt. Phys. Mater. 19(4), 767–771 (2010) ADSGoogle Scholar
  84. 84.
    H.J. Kim et al., High-performance laser mode-locker with glass-hosted SWNTs realized by room-temperature aerosol deposition. Opt. Express 19(5), 4762–4767 (2011) Google Scholar
  85. 85.
    A. Schmidt et al., 175 fs Tm:Lu(2)O(3) laser at 2.07 μm mode-locked using single-walled carbon nanotubes. Opt. Express 20(5), 5313–5318 (2012) ADSGoogle Scholar
  86. 86.
    R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, New York, 2008) Google Scholar
  87. 87.
    D.E. Spence, P.N. Kean, W. Sibbett, 60-fsec pulse generation from a self-mode-locked Ti-sapphire laser. Opt. Lett. 16(1), 42–44 (1991) ADSGoogle Scholar
  88. 88.
    U. Keller et al., Femtosecond pulses from a continuously self-starting passively mode-locked Ti-sapphire laser. Opt. Lett. 16(13), 1022–1024 (1991) ADSGoogle Scholar
  89. 89.
    I.T. Sorokina, K.L. Vodopyanov (eds.), Solid-State Mid-Infrared Laser Sources. Topics in Applied Physics (Springer, Berlin, 2003) Google Scholar
  90. 90.
    M. Ebrahim-Zadeh, I.T. Sorokina (eds.), Mid-Infrared Coherent Sources and Applications. NATO Science for Peace and Security Series B: Physics and Biophysics. (Springer, Dordrecht, 2008) Google Scholar
  91. 91.
    M.N. Cizmeciyan et al., Kerr-lens mode-locked femtosecond Cr(2+):ZnSe laser at 2420 nm. Opt. Lett. 34(20), 3056–3058 (2009) Google Scholar
  92. 92.
    F. Salin, J. Squier, M. Piche, Mode-locking of Ti-Al(2)O(3) lasers and self-focusing—a Gaussian approximation. Opt. Lett. 16(21), 1674–1676 (1991) ADSGoogle Scholar
  93. 93.
    H.A. Haus, E.P. Ippen, K. Tamura, Additive-pulse modelocking in fiber lasers. IEEE J. Quantum Electron. 30(1), 200–208 (1994) ADSGoogle Scholar
  94. 94.
    G. Agrawal, in Nonlinear Fiber Optics, 4th edn. (2006) Google Scholar
  95. 95.
    G. Genty, S. Coen, J.M. Dudley, Fiber supercontinuum sources (invited). J. Opt. Soc. Am. B, Opt. Phys. 24(8), 1771–1785 (2007) ADSGoogle Scholar
  96. 96.
    P. Russell, Photonic crystal fibers. Science 299(5605), 358–362 (2003) ADSGoogle Scholar
  97. 97.
    J.C. Knight, Photonic crystal fibres. Nature 424(6950), 847–851 (2003) ADSGoogle Scholar
  98. 98.
    L. Dong, B.K. Thomas, L.B. Fu, Highly nonlinear silica suspended core fibers. Opt. Express 16(21), 16423–16430 (2008) ADSGoogle Scholar
  99. 99.
    L.B. Fu, B.K. Thomas, L. Dong, Efficient supercontinuum generations in silica suspended core fibers. Opt. Express 16(24), 19629–19642 (2008) ADSGoogle Scholar
  100. 100.
    T. Okuno et al., Silica-based functional fibers with enhanced nonlinearity and their applications. IEEE J. Sel. Top. Quantum Electron. 5(5), 1385–1391 (1999) Google Scholar
  101. 101.
    J.M. Dudley, S. Coen, Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers. IEEE J. Sel. Top. Quantum Electron. 8(3), 651–659 (2002) Google Scholar
  102. 102.
    P. Domachuk et al., Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express 16(10), 7161–7168 (2008) ADSGoogle Scholar
  103. 103.
    J.S. Sanghera, L.B. Shaw, I.D. Aggarwal, Chalcogenide glass-fiber-based mid-IR sources and applications. IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009) Google Scholar
  104. 104.
    R. Cherif et al., Highly nonlinear As2Se3-based chalcogenide photonic crystal fiber for midinfrared supercontinuum generation. Opt. Eng. 49(9), 095002 (2010) ADSGoogle Scholar
  105. 105.
    W.Q. Zhang et al., Fabrication and supercontinuum generation in dispersion flattened bismuth microstructured optical fiber. Opt. Express 19(22), 21135–21144 (2011) ADSGoogle Scholar
  106. 106.
    A. Marandi et al., Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm. Opt. Express 20(22), 24218–24225 (2012) ADSGoogle Scholar
  107. 107.
    J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78(4), 1135–1184 (2006) ADSGoogle Scholar
  108. 108.
    J.M. Dudley, J.R. Taylor (eds.), Supercontinuum Generation in Optical Fibers (Cambridge University Press, Cambridge, 2010) Google Scholar
  109. 109.
    J.L. Krause, K.J. Schafer, K.C. Kulander, High-order harmonic-generation from atoms and ions in the high-intensity regime. Phys. Rev. Lett. 68(24), 3535–3538 (1992) ADSGoogle Scholar
  110. 110.
    A. Lhuillier, P. Balcou, High-order harmonic-generation in rare-gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70(6), 774–777 (1993) ADSGoogle Scholar
  111. 111.
    P.B. Corkum, Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71(13), 1994–1997 (1993) ADSGoogle Scholar
  112. 112.
    M. Lewenstein et al., Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49(3), 2117–2132 (1994) ADSGoogle Scholar
  113. 113.
    T. Popmintchev et al., The attosecond nonlinear optics of bright coherent X-ray generation. Nat. Photonics 4(12), 822–832 (2010) ADSGoogle Scholar
  114. 114.
    A.K. Mills et al., XUV frequency combs via femtosecond enhancement cavities. J. Phys. B, At. Mol. Opt. Phys. 45(14), 142001 (2012) ADSGoogle Scholar
  115. 115.
    D.C. Yost et al., Power optimization of XUV frequency combs for spectroscopy applications. Opt. Express 19(23), 23483–23493 (2011) ADSGoogle Scholar
  116. 116.
    M. Kourogi, K. Nakagawa, M. Ohtsu, Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE J. Quantum Electron. 29(10), 2693–2701 (1993) ADSGoogle Scholar
  117. 117.
    M. Kourogi, T. Enami, M. Ohtsu, A monolithic optical frequency comb generator. IEEE Photonics Technol. Lett. 6(2), 214–217 (1994) ADSGoogle Scholar
  118. 118.
    J. Ye et al., Highly selective terahertz optical frequency comb generator. Opt. Lett. 22(5), 301–303 (1997) ADSGoogle Scholar
  119. 119.
    S.A. Diddams et al., Broadband optical frequency comb generation with a phase-modulated parametric oscillator. Opt. Lett. 24(23), 1747–1749 (1999) ADSGoogle Scholar
  120. 120.
    T. Suzuki, M. Hirai, M. Katsuragawa, Octave-spanning Raman comb with carrier envelope offset control. Phys. Rev. Lett. 101(24), 243602 (2008) ADSGoogle Scholar
  121. 121.
    P. Del’Haye et al., Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett. 101(5), 053903 (2008) ADSGoogle Scholar
  122. 122.
    P. Del’Haye et al., Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett. 107(6), 063901 (2011) ADSGoogle Scholar
  123. 123.
    T.J. Kippenberg, R. Holzwarth, S.A. Diddams, Microresonator-based optical frequency combs. Science 332(6029), 555–559 (2011) ADSGoogle Scholar
  124. 124.
    T.B.V. Herr, M.L. Gorodetsky, T.J. Kippenberg, Soliton mode-locking in optical microresonators. arXiv:1211.0733 (2012)
  125. 125.
    K. Saha et al., Modelocking and femtosecond pulse generation in chip-based frequency combs. Opt. Express 21(1), 1335–1343 (2013) ADSGoogle Scholar
  126. 126.
    S.B. Papp, S.A. Diddams, Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Phys. Rev. A 84(5), 053833 (2011) ADSGoogle Scholar
  127. 127.
    T. Herr et al., Universal formation dynamics and noise of Kerr-frequency combs in microresonators. Nat. Photonics 6(7), 480–487 (2012) ADSGoogle Scholar
  128. 128.
    L. Matos et al., Direct frequency comb generation from an octave-spanning, prismless Ti:sapphire laser. Opt. Lett. 29(14), 1683–1685 (2004) ADSGoogle Scholar
  129. 129.
    A. Bartels, D. Heinecke, S.A. Diddams, Passively mode-locked 10 GHz femtosecond Ti:sapphire laser. Opt. Lett. 33(16), 1905–1907 (2008) ADSGoogle Scholar
  130. 130.
    A. Ruehl et al., 80 W, 120 fs Yb-fiber frequency comb. Opt. Lett. 35(18), 3015–3017 (2010) ADSGoogle Scholar
  131. 131.
    I. Hartl et al., Fully Stabilized GHz Yb-Fiber Laser Frequency Comb. Advanced Solid State Phonics (Optical Society of America, Washington, 2009) Google Scholar
  132. 132.
    J. Rauschenberger et al., Control of the frequency comb from a mode-locked erbium-doped fiber laser. Opt. Express 10(24), 1404–1410 (2002) ADSGoogle Scholar
  133. 133.
    B.R. Washburn et al., Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared. Opt. Lett. 29(3), 250–252 (2004) ADSGoogle Scholar
  134. 134.
    B.R. Walton et al., Transportable optical frequency comb based on a mode-locked fibre laser. IET Optoelectron. 2(5), 182–187 (2008) Google Scholar
  135. 135.
    S. Herrmann et al., Atom optical experiments in the drop tower: a pathfinder for space based precision measurements, in 38th COSPAR Scientific Assembly (2010) Google Scholar
  136. 136.
    F. Adler et al., Attosecond relative timing jitter and 13 fs tunable pulses from a two-branch Er:fiber laser. Opt. Lett. 32(24), 3504–3506 (2007) ADSGoogle Scholar
  137. 137.
    K. Moutzouris et al., Multimilliwatt ultrashort pulses continuously tunable in the visible from a compact fiber source. Opt. Lett. 31(8), 1148–1150 (2006) ADSGoogle Scholar
  138. 138.
    A. Gambetta, R. Ramponi, M. Marangoni, Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator. Opt. Lett. 33(22), 2671–2673 (2008) ADSGoogle Scholar
  139. 139.
    N. Coluccelli et al., 250-MHz synchronously pumped optical parametric oscillator at 2.25–2.6 μm and 4.1–4.9 μm. Opt. Express 20(20), 22042–22047 (2012) ADSGoogle Scholar
  140. 140.
    D. Chao et al., Self-referenced erbium fiber laser frequency comb at a GHz repetition rate—OSA technical digest, in Optical Fiber Communication Conference OW1C.2, (2012) Google Scholar
  141. 141.
    F. Adler, S.A. Diddams, High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 μm wavelength region. Opt. Lett. 37(9), 1400–1402 (2012) ADSGoogle Scholar
  142. 142.
    R.A. Kaindl et al., Broadband phase-matched difference frequency mixing of femtosecond pulses in GaSe: experiment and theory. Appl. Phys. Lett. 75(8), 1060–1062 (1999) ADSGoogle Scholar
  143. 143.
    S.M. Foreman, D.J. Jones, J. Ye, Flexible and rapidly configurable femtosecond pulse generation in the mid-IR. Opt. Lett. 28(5), 370–372 (2003) ADSGoogle Scholar
  144. 144.
    C. Erny et al., Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source. Opt. Lett. 32(9), 1138–1140 (2007) ADSGoogle Scholar
  145. 145.
    L. Nugent-Glandorf et al., Mid-infrared virtually imaged phased array spectrometer for rapid and broadband trace gas detection. Opt. Lett. 37(15), 3285–3287 (2012) ADSGoogle Scholar
  146. 146.
    J.H. Sun, B.J.S. Gale, D.T. Reid, Composite frequency comb spanning 0.4–2.4 μm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator. Opt. Lett. 32(11), 1414–1416 (2007) ADSGoogle Scholar
  147. 147.
    D.T. Reid, B.J.S. Gale, J. Sun, Frequency comb generation and carrier-envelope phase control in femtosecond optical parametric oscillators. Laser Phys. 18(2), 87–103 (2008) ADSGoogle Scholar
  148. 148.
    S.T. Wong, K.L. Vodopyanov, R.L. Byer, Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source. J. Opt. Soc. Am. B, Opt. Phys. 27(5), 876–882 (2010) ADSGoogle Scholar
  149. 149.
    S. Marzenell, R. Beigang, R. Wallenstein, Synchronously pumped femtosecond optical parametric oscillator based on AgGaSe2 tunable from 2 μm to 8 μm. Appl. Phys. B, Lasers Opt. 69(5–6), 423–428 (1999) ADSGoogle Scholar
  150. 150.
    E. Hecht, Optics, 3rd edn. (Addison-Wesley, Reading, 1998) Google Scholar
  151. 151.
    I. Hartl et al., Cavity-enhanced similariton Yb-fiber laser frequency comb: 3×1014 W cm−2 peak intensity at 136 MHz. Opt. Lett. 32(19), 2870–2872 (2007) ADSGoogle Scholar
  152. 152.
    R.J. Jones, I. Thomann, J. Ye, Precision stabilization of femtosecond lasers to high-finesse optical cavities. Phys. Rev. A 69(5), 051803 (2004) ADSGoogle Scholar
  153. 153.
    R.W.P. Drever et al., Laser phase and frequency stabilization using an optical-resonator. Appl. Phys., B Photophys. Laser Chem. 31(2), 97–105 (1983) ADSGoogle Scholar
  154. 154.
    T.W. Hansch, B. Couillaud, Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity. Opt. Commun. 35(3), 441–444 (1980) ADSGoogle Scholar
  155. 155.
    A. Foltynowicz et al., Quantum-noise-limited optical frequency comb spectroscopy. Phys. Rev. Lett. 107(23), 233002 (2011) ADSGoogle Scholar
  156. 156.
    A. Foltynowicz et al., Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Appl. Phys. B 110(2), 163–175 (2013) ADSGoogle Scholar
  157. 157.
    R. Gebs et al., 1-GHz repetition rate femtosecond OPO with stabilized offset between signal and idler frequency combs. Opt. Express 16(8), 5397–5405 (2008) ADSGoogle Scholar
  158. 158.
    K.K. Lehmann, P.S. Johnston, P. Rabinowitz, Brewster angle prism retroreflectors for cavity enhanced spectroscopy. Appl. Opt. 48(16), 2966–2978 (2009) ADSGoogle Scholar
  159. 159.
    S. Kassi et al., Demonstration of cavity enhanced FTIR spectroscopy using a femtosecond laser absorption source. Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 75(1), 142–145 (2010) ADSGoogle Scholar
  160. 160.
    R. Grilli et al., Frequency comb based spectrometer for in situ and real time measurements of IO, BrO, NO2, and H2CO at pptv and ppqv levels. Environ. Sci. Technol. 46(19), 10704–10710 (2012) ADSGoogle Scholar
  161. 161.
    R. Grilli et al., First investigations of IO, BrO, and NO2 summer atmospheric levels at a coastal East Antarctic site using mode-locked cavity enhanced absorption spectroscopy. Geophys. Res. Lett. 40, 1–6 (2013) ADSGoogle Scholar
  162. 162.
    R. Grilli et al., Cavity-enhanced multiplexed comb spectroscopy down to the photon shot noise. Phys. Rev. A 85(5), 051804 (2012) ADSGoogle Scholar
  163. 163.
    M. Shirasaki, Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer. Opt. Lett. 21(5), 366–368 (1996) ADSGoogle Scholar
  164. 164.
    S.A. Diddams, L. Hollberg, V. Mbele, Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445(7128), 627–630 (2007) Google Scholar
  165. 165.
    J. Mandon, G. Guelachvili, N. Picque, Fourier transform spectroscopy with a laser frequency comb. Nat. Photonics 3(2), 99–102 (2009) ADSGoogle Scholar
  166. 166.
    S. Schiller, Spectrometry with frequency combs. Opt. Lett. 27(9), 766–768 (2002) ADSGoogle Scholar
  167. 167.
    I. Coddington, W.C. Swann, N.R. Newbury, Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100(1), 013902 (2008) ADSGoogle Scholar
  168. 168.
    B. Bernhardt et al., Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4(1), 55–57 (2010) ADSGoogle Scholar
  169. 169.
    X.D.D. Vaernewijck et al., Cavity enhanced FTIR spectroscopy using a femto OPO absorption source. Mol. Phys. 109(17–18), 2173–2179 (2011) ADSGoogle Scholar
  170. 170.
    C. Gohle et al., Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett. 99(26), 263902 (2007) ADSGoogle Scholar
  171. 171.
    T. Steinmetz et al., Laser frequency combs for astronomical observations. Science 321(5894), 1335–1337 (2008) ADSGoogle Scholar
  172. 172.
    T. Steinmetz et al., Fabry-Perot filter cavities for wide-spaced frequency combs with large spectral bandwidth. Appl. Phys. B, Lasers Opt. 96(2–3), 251–256 (2009) ADSGoogle Scholar
  173. 173.
    F. Quinlan et al., A 12.5 GHz-spaced optical frequency comb spanning >400 nm for near-infrared astronomical spectrograph calibration. Rev. Sci. Instrum. 81(6), 063105 (2010) ADSGoogle Scholar
  174. 174.
    A. Okeefe, D.A.G. Deacon, Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources. Rev. Sci. Instrum. 59(12), 2544–2551 (1988) ADSGoogle Scholar
  175. 175.
    J.J. Scherer, Ringdown spectral photography. Chem. Phys. Lett. 292(1–2), 143–153 (1998) ADSGoogle Scholar
  176. 176.
    J.J. Scherer et al., Broadband ringdown spectral photography. Appl. Opt. 40(36), 6725–6732 (2001) ADSGoogle Scholar
  177. 177.
    S.M. Ball et al., Broadband cavity ringdown spectroscopy of the NO3 radical. Chem. Phys. Lett. 342(1–2), 113–120 (2001) ADSGoogle Scholar
  178. 178.
    S.J. Xiao, A.M. Weiner, 2-D wavelength demultiplexer with potential for ≥1000 channels in the C-band. Opt. Express 12(13), 2895–2902 (2004) ADSGoogle Scholar
  179. 179.
    S.X. Wang, S.J. Xiao, A.M. Weiner, Broadband, high spectral resolution 2-D wavelength-parallel polarimeter for dense WDM systems. Opt. Express 13(23), 9374–9380 (2005) ADSGoogle Scholar
  180. 180.
    P.R. Griffiths, J.A. de Haseth, Fourier Transform Infrared Spectrometry (Wiley, Hoboken, 2007) Google Scholar
  181. 181.
    A.A. Ruth, J. Orphal, S.E. Fiedler, Fourier-transform cavity-enhanced absorption spectroscopy using an incoherent broadband light source. Appl. Opt. 46(17), 3611–3616 (2007) ADSGoogle Scholar
  182. 182.
    P. Balling et al., Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy. Meas. Sci. Technol. 23(9), 094001 (2012) ADSGoogle Scholar
  183. 183.
    J. Mandon et al., Femtosecond laser Fourier transform absorption spectroscopy. Opt. Lett. 32(12), 1677–1679 (2007) ADSGoogle Scholar
  184. 184.
    X.D.D. Vaernewijck, S. Kassi, M. Herman, (OCO)-O-17-C-12-O-17 and (OCO)-O-18-C-12-O-17 overtone spectroscopy in the 1.64 μm region. Chem. Phys. Lett. 514(1–3), 29–31 (2011) ADSGoogle Scholar
  185. 185.
    X.D.D. Vaernewijck, S. Kassi, M. Herman, (OCO)-O-17-C-12-O-17 and (OCO)-O-18-C-12-O-17 spectroscopy in the 1.6 μm region. Mol. Phys. 110(21–22), 2665–2671 (2012) ADSGoogle Scholar
  186. 186.
    P.C.D. Hobbs, Ultrasensitive laser measurements without tears. Appl. Opt. 36(4), 903–920 (1997) ADSGoogle Scholar
  187. 187.
    S.A. Davis, M. Abrams, J. Brault, Fourier Transform Spectrometry (Academic Press, San Diego, 2001), p. 262 Google Scholar
  188. 188.
    A. Schliesser et al., Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13(22), 9029–9038 (2005) ADSGoogle Scholar
  189. 189.
    N.R. Newbury, I. Coddington, W. Swann, Sensitivity of coherent dual-comb spectroscopy. Opt. Express 18(8), 7929–7945 (2010) Google Scholar
  190. 190.
    T. Ideguchi et al., Adaptive dual-comb spectroscopy in the green region. Opt. Lett. 37(23), 4847–4849 (2012) ADSGoogle Scholar
  191. 191.
    S. Boudreau, J. Genest, Referenced passive spectroscopy using dual frequency combs. Opt. Express 20(7), 7375–7387 (2012) ADSGoogle Scholar
  192. 192.
    J.D. Deschenes, P. Giaccari, J. Genest, Optical referencing technique with CW lasers as intermediate oscillators for continuous full delay range frequency comb interferometry. Opt. Express 18(22), 23358–23370 (2010) ADSGoogle Scholar
  193. 193.
    A. Schliesser, N. Picque, T.W. Hansch, Mid-infrared frequency combs. Nat. Photonics 6(7), 440–449 (2012) ADSGoogle Scholar
  194. 194.
    T.H. Risby, S.F. Solga, Current status of clinical breath analysis. Appl. Phys. B, Lasers Opt. 85(2–3), 421–426 (2006) ADSGoogle Scholar
  195. 195.
    L. Pauling et al., Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Natl. Acad. Sci. USA 68(10), 2374–2376 (1971) ADSGoogle Scholar
  196. 196.
    A.J. Cunnington, P. Hormbrey, Breath analysis to detect recent exposure to carbon monoxide. Postgrad. Med. J. 78(918), 233–237 (2002) Google Scholar
  197. 197.
    E.R. Crosson et al., Stable isotope ratios using cavity ring-down spectroscopy: determination of C-13/C-12 for carbon dioxide in human breath. Anal. Chem. 74(9), 2003–2007 (2002) Google Scholar
  198. 198.
    B.J. Marshall, J.R. Warren, Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1(8390), 1311–1315 (1984) Google Scholar
  199. 199.
    Helicobacter pylori: fact sheet for health care providers. Center for Disease Control, Atlanta, GA (1998) Google Scholar
  200. 200.
    S.Y. Lehman, K.A. Bertness, J.T. Hodges, Detection of trace water in phosphine with cavity ring-down spectroscopy. J. Cryst. Growth 250(1–2), 262–268 (2003) ADSGoogle Scholar
  201. 201.
    J. Feng, R. Clement, M. Raynor, Characterization of high-purity arsine and gallium arsenide epilayers grown by MOCVD. J. Cryst. Growth 310(23), 4780–4785 (2008) ADSGoogle Scholar
  202. 202.
    H.H. Funke et al., Techniques for the measurement of trace moisture in high-purity electronic specialty gases. Rev. Sci. Instrum. 74(9), 3909–3933 (2003) ADSGoogle Scholar
  203. 203.
    I. Horvath et al., Combined use of exhaled hydrogen peroxide and nitric oxide in monitoring asthma. Am. J. Respir. Crit. Care Med. 158(4), 1042–1046 (1998) Google Scholar
  204. 204.
    S.A. Kharitonov, P.J. Barnes, Exhaled biomarkers. Chest 130(5), 1541–1546 (2006) Google Scholar
  205. 205.
    S.A. Kharitonov, P.J. Barnes, Exhaled markers of pulmonary disease. Am. J. Respir. Crit. Care Med. 163(7), 1693–1722 (2001) Google Scholar
  206. 206.
    P.S. Connell, D.J. Wuebbles, J.S. Chang, Stratospheric hydrogen-peroxide—the relationship of theory and observation. J. Geophys. Res., Atmos. 90(Nd6), 10726–10732 (1985) ADSGoogle Scholar
  207. 207.
    J.A. Snow et al., Hydrogen peroxide, methyl hydroperoxide, and formaldehyde over North America and the North Atlantic. J. Geophys. Res., Atmos. 112(D12), D12s07 (2007) Google Scholar
  208. 208.
    C.P. Rinsland et al., Detection of elevated tropospheric hydrogen peroxide (H2O2) mixing ratios in atmospheric chemistry experiment (ACE) subtropical infrared solar occultation spectra. J. Quant. Spectrosc. Radiat. Transf. 107(2), 340–348 (2007) ADSGoogle Scholar
  209. 209.
    T.J. Johnson et al., Absolute integrated intensities of vapor-phase hydrogen peroxide (H(2)O(2)) in the mid-infrared at atmospheric pressure. Anal. Bioanal. Chem. 395(2), 377–386 (2009) Google Scholar
  210. 210.
    J.D. Rogers, Calculation of absolute infrared intensities of binary overtone, combination, and difference bands of hydrogen-peroxide. J. Phys. Chem. 88(3), 526–530 (1984) Google Scholar
  211. 211.
    L.S. Rothman et al., The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110(9–10), 533–572 (2009) ADSGoogle Scholar
  212. 212.
    R. Ciurylo, Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings. Phys. Rev. A 58(2), 1029–1039 (1998) ADSGoogle Scholar
  213. 213.
    J.-M. Hartmann, C. Boulet, D. Robert, Collisional Effects on Molecular Spectra: Laboratory Experiments and Model, Consequences for Applications (Elsevier, Amsterdam, 2008) Google Scholar
  214. 214.
    T.A. Staffelbach et al., Comparison of hydroperoxide measurements made during the Mauna Loa observatory photochemistry experiment 2. J. Geophys. Res., Atmos. 101(D9), 14729–14739 (1996) ADSGoogle Scholar
  215. 215.
    P.J. Sarre, The diffuse interstellar bands: a major problem in astronomical spectroscopy. J. Mol. Spectrosc. 238(1), 1–10 (2006) ADSGoogle Scholar
  216. 216.
    T.P. Snow, V.M. Bierbaum, Ion chemistry in the interstellar medium. Annu. Rev. Anal. Chem. 1, 229–259 (2008) Google Scholar
  217. 217.
    S. Schiller, V. Korobov, Tests of time independence of the electron and nuclear masses with ultracold molecules. Phys. Rev. A 71(3), 032505 (2005) ADSGoogle Scholar
  218. 218.
    E.R. Meyer, J.L. Bohn, M.P. Deskevich, Candidate molecular ions for an electron electric dipole moment experiment. Phys. Rev. A 73(6), 062108 (2006) ADSGoogle Scholar
  219. 219.
    J.C.J. Koelemeij et al., Vibrational spectroscopy of HD+ with 2-ppb accuracy. Phys. Rev. Lett. 98(17), 173002 (2007) ADSGoogle Scholar
  220. 220.
    L.V. Skripnikov et al., On the search for time variation in the fine-structure constant: ab initio calculation of HfF+. JETP Lett. 88(9), 578–581 (2008) ADSGoogle Scholar
  221. 221.
    K. Beloy et al., Rotational spectrum of the molecular ion NH+ as a probe for alpha and m(e)/m(p) variation. Phys. Rev. A 83(6), 062514 (2011) ADSGoogle Scholar
  222. 222.
    A.E. Leanhardt et al., High-resolution spectroscopy on trapped molecular ions in rotating electric fields: a new approach for measuring the electron electric dipole moment. J. Mol. Spectrosc. 270(1), 1–25 (2011) ADSGoogle Scholar
  223. 223.
    B.J. Barker et al., Communication: spectroscopic measurements for HfF+ of relevance to the investigation of fundamental constants. J. Chem. Phys. 134(20), 201102 (2011) ADSGoogle Scholar
  224. 224.
    B.J. Barker et al., Spectroscopic investigations of ThF and ThF+. J. Chem. Phys. 136(10), 104305 (2012) ADSGoogle Scholar
  225. 225.
    A.N. Petrov, N.S. Mosyagin, A.V. Titov, Theoretical study of low-lying electronic terms and transition moments for HfF+ for the electron electric-dipole-moment search. Phys. Rev. A 79(1), 012505 (2009) ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. Masłowski
    • 1
  • K. C. Cossel
    • 2
  • A. Foltynowicz
    • 3
  • J. Ye
    • 2
  1. 1.Institute of Physics, Faculty of Physics, Astronomy and InformaticsNicolaus Copernicus UniversityTorunPoland
  2. 2.JILA, National Institute of Standards and Technology and University of Colorado, Department of PhysicsUniversity of ColoradoBoulderUSA
  3. 3.Department of PhysicsUmeå UniversityUmeåSweden

Personalised recommendations