Cognitive and Sub-regular Complexity

  • James Rogers
  • Jeffrey Heinz
  • Margaret Fero
  • Jeremy Hurst
  • Dakotah Lambert
  • Sean Wibel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8036)

Abstract

We present a measure of cognitive complexity for subclasses of the regular languages that is based on model-theoretic complexity rather than on description length of particular classes of grammars or automata. Unlike description length approaches, this complexity measure is independent of the implementation details of the cognitive mechanism. Hence, it provides a basis for making inferences about cognitive mechanisms that are valid regardless of how those mechanisms are actually realized.

Keywords

Cognitive complexity sub-regular hierarchy descriptive complexity phonological stress 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Folia, V., Uddén, J., de Vries, M., Forkstam, C., Petersson, K.M.: Artificial language learning in adults and children. Language Learning 60, 188–220 (2010)CrossRefGoogle Scholar
  2. 2.
    Hauser, M.D., Chomsky, N., Fitch, W.T.: The faculty of language: What is it, who has it, and how did it evolve? Science 298(5598), 1569–1579 (2002)CrossRefGoogle Scholar
  3. 3.
    Heinz, J.: Learning long-distance phonotactics. Linguistic Inquiry 41(4), 623–661 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Heinz, J., Idsardi, W.: Sentence and word complexity. Science 333(6040), 295–297 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press (1971)Google Scholar
  6. 6.
    Büchi, J.R.: Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)MATHCrossRefGoogle Scholar
  7. 7.
    Elgot, C.C.: Decision problems of finite automata and related arithmetics. Transactions of the American Mathematical Society 98, 21–51 (1961)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hayes, B.: Metrical Stress Theory. Chicago University Press (1995)Google Scholar
  9. 9.
    van der Hulst, H., Goedemans, R., van Zanten, E. (eds.): A survey of word accentual patterns in the languages of the world. Mouton de Gruyter, Berlin (2010)Google Scholar
  10. 10.
    Heinz, J.: The Inductive Learning of Phonotactic Patterns. PhD thesis, University of California, Los Angeles (2007)Google Scholar
  11. 11.
    Heinz, J.: On the role of locality in learning stress patterns. Phonology 26(2), 303–351 (2009)CrossRefGoogle Scholar
  12. 12.
    Hopcroft, J., Motwani, R., Ullman, J.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley (2001)Google Scholar
  13. 13.
    Kracht, M.: The Mathematics of Language. Mouton de Gruyter (2003)Google Scholar
  14. 14.
    Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press (1972)Google Scholar
  15. 15.
    Gold, E.: Language identification in the limit. Information and Control 10, 447–474 (1967)MATHCrossRefGoogle Scholar
  16. 16.
    Garcia, P., Vidal, E., Oncina, J.: Learning locally testable languages in the strict sense. In: Proceedings of the Workshop on Algorithmic Learning Theory, pp. 325–338 (1990)Google Scholar
  17. 17.
    Edlefsen, M., Leeman, D., Myers, N., Smith, N., Visscher, M., Wellcome, D.: Deciding strictly local (SL) languages. In: Breitenbucher, J. (ed.) Proceedings of the Midstates Conference for Undergraduate Research in Computer Science and Mathematics, pp. 66–73 (2008)Google Scholar
  18. 18.
    Heinz, J.: UD phonology lab stress pattern database (March 2012), http://phonology.cogsci.udel.edu/dbs/stress/
  19. 19.
    Graf, T.: Comparing incomparable frameworks: A model theoretic approach to phonology. University of Pennsylvania Working Papers in Linguistics 16(2), Article 10 (2010), http://repository.upenn.edu/pwpl/vol16/iss1/10
  20. 20.
    Hyman, L.M.: How (not) to do phonological typology: the case of pitch-accent. Language Sciences 31(2-3), 213–238 (2009); Data and Theory: Papers in Phonology in Celebration of Charles W. KisseberthGoogle Scholar
  21. 21.
    García, P., Ruiz, J.: Learning k-testable and k-piecewise testable languages from positive data. Grammars 7, 125–140 (2004)Google Scholar
  22. 22.
    Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer and Systems Sciences 25, 360–376 (1982)MATHCrossRefGoogle Scholar
  23. 23.
    Rogers, J., Heinz, J., Bailey, G., Edlefsen, M., Visscher, M., Wellcome, D., Wibel, S.: On languages piecewise testable in the strict sense. In: Ebert, C., Jäger, G., Michaelis, J. (eds.) MOL 10. LNCS (LNAI), vol. 6149, pp. 255–265. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  24. 24.
    Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975. LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975)Google Scholar
  25. 25.
    Graf, T.: Locality and the complexity of minimalist derivation tree languages. In: de Groote, P., Nederhof, M.-J. (eds.) Formal Grammar 2010/2011. LNCS, vol. 7395, pp. 208–227. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • James Rogers
    • 1
  • Jeffrey Heinz
    • 2
  • Margaret Fero
    • 1
  • Jeremy Hurst
    • 1
  • Dakotah Lambert
    • 1
  • Sean Wibel
    • 1
  1. 1.Earlham CollegeRichmondUSA
  2. 2.University of DelawareNewarkUSA

Personalised recommendations