Conjunctive Grammars in Greibach Normal Form and the Lambek Calculus with Additive Connectives

  • Stepan Kuznetsov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8036)


We prove that any language without the empty word, generated by a conjunctive grammar in Greibach normal form, is generated by a grammar based on the Lambek calculus enriched with additive (“intersection” and “union”) connectives.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bar-Hillel, Y., Gaifman, C., Shamir, E.: On the categorial and phrase-structure grammars. Bull. of the Research Council of Israel, Sect. F 9F, 1–16 (1960)MathSciNetGoogle Scholar
  2. 2.
    Buszkowski, W.: The equivalence of unidirectional Lambek categorial grammars and context-free languages. Zeitschr. für math. Logik und Grundl. der Math. 31, 369–384 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Greibach, S.: A new normal-form theorem for context-free phrase structure grammars. Journal of the ACM 12, 42–52 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Jeż, A.: Conjunctive grammars can generate non-regular unary languages. International Journal of Foundations of Computer Science 19(3), 597–615 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Kanazawa, M.: The Lambek calculus enriched with additional connectives. Journal of Logic, Language and Information 1, 141–171 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Kanazawa, M.: Lambek calculus: recognizing power and complexity. In: Gerbrandy, J., Marx, M., de Rijke, M., Venema, Y. (eds.) JFAK. Essays Dedicated to Johan van Benthem on the Occasion of his 50th Birthday. Amsterdam University Press, Vossiuspers (1999)Google Scholar
  7. 7.
    Lambek, J.: The mathematics of sentence structure. American Math. Monthly 65(3), 154–170 (1958)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of Language and its Mathematical Aspects. Amer. Math. Soc. (1961)Google Scholar
  9. 9.
    Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Combinatorics 6(4), 519–535 (2001)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Okhotin, A.: The dual of concatenation. Theor. Comput. Sci. 345(2-3), 425–447 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Okhotin, A., Reitwießner, C.: Conjunctive grammars with restricted disjunction. Theor. Comput. Sci. 411(26-28), 2559–2571 (2010)Google Scholar
  12. 12.
    Pentus, M.: Lambek grammars are context-free. In: 8th Annual IEEE Symposium on Logic in Computer Science, pp. 429–433. IEEE Computer Society Press, Los Alamitos (1993)Google Scholar
  13. 13.
    Safiullin, A.N.: Derivability of admissible rules with simple premises in the Lambek calculus. Moscow University Math. Bull. 62(4), 72–76 (2007)MathSciNetGoogle Scholar
  14. 14.
    Szabari, A.: Alternujúce Zásobníkové Automaty (Alternating Pushdown Automata), in Slovak, diploma work (M. Sc. thesis), University of Košice, Czechoslovakia, p. 45 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stepan Kuznetsov
    • 1
  1. 1.Moscow State UniversityRussia

Personalised recommendations