Advertisement

Conjunctive Grammars in Greibach Normal Form and the Lambek Calculus with Additive Connectives

  • Stepan Kuznetsov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8036)

Abstract

We prove that any language without the empty word, generated by a conjunctive grammar in Greibach normal form, is generated by a grammar based on the Lambek calculus enriched with additive (“intersection” and “union”) connectives.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Hillel, Y., Gaifman, C., Shamir, E.: On the categorial and phrase-structure grammars. Bull. of the Research Council of Israel, Sect. F 9F, 1–16 (1960)MathSciNetGoogle Scholar
  2. 2.
    Buszkowski, W.: The equivalence of unidirectional Lambek categorial grammars and context-free languages. Zeitschr. für math. Logik und Grundl. der Math. 31, 369–384 (1985)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Greibach, S.: A new normal-form theorem for context-free phrase structure grammars. Journal of the ACM 12, 42–52 (1965)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Jeż, A.: Conjunctive grammars can generate non-regular unary languages. International Journal of Foundations of Computer Science 19(3), 597–615 (2008)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Kanazawa, M.: The Lambek calculus enriched with additional connectives. Journal of Logic, Language and Information 1, 141–171 (1992)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Kanazawa, M.: Lambek calculus: recognizing power and complexity. In: Gerbrandy, J., Marx, M., de Rijke, M., Venema, Y. (eds.) JFAK. Essays Dedicated to Johan van Benthem on the Occasion of his 50th Birthday. Amsterdam University Press, Vossiuspers (1999)Google Scholar
  7. 7.
    Lambek, J.: The mathematics of sentence structure. American Math. Monthly 65(3), 154–170 (1958)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Lambek, J.: On the calculus of syntactic types. In: Jakobson, R. (ed.) Structure of Language and its Mathematical Aspects. Amer. Math. Soc. (1961)Google Scholar
  9. 9.
    Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Combinatorics 6(4), 519–535 (2001)MathSciNetMATHGoogle Scholar
  10. 10.
    Okhotin, A.: The dual of concatenation. Theor. Comput. Sci. 345(2-3), 425–447 (2005)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Okhotin, A., Reitwießner, C.: Conjunctive grammars with restricted disjunction. Theor. Comput. Sci. 411(26-28), 2559–2571 (2010)Google Scholar
  12. 12.
    Pentus, M.: Lambek grammars are context-free. In: 8th Annual IEEE Symposium on Logic in Computer Science, pp. 429–433. IEEE Computer Society Press, Los Alamitos (1993)Google Scholar
  13. 13.
    Safiullin, A.N.: Derivability of admissible rules with simple premises in the Lambek calculus. Moscow University Math. Bull. 62(4), 72–76 (2007)MathSciNetGoogle Scholar
  14. 14.
    Szabari, A.: Alternujúce Zásobníkové Automaty (Alternating Pushdown Automata), in Slovak, diploma work (M. Sc. thesis), University of Košice, Czechoslovakia, p. 45 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Stepan Kuznetsov
    • 1
  1. 1.Moscow State UniversityRussia

Personalised recommendations