Efficiency of Traction Power Conversion Based on Crosswind Motion

  • Ivan ArgatovEmail author
  • Risto Silvennoinen
Part of the Green Energy and Technology book series (GREEN)


This review paper is devoted to analytical modeling of the so-called kite wind generator (KWG) whose power conversion operation uses a tethered kite to mechanically drive a groundbased electric generator. An important aspect of the KWG operating principle is the controlled crosswind motion of the kite, which is used to increase the kite traction force. A simple mathematical model for steady crosswind motion of the tethered kite is formulated on the basis of the refined crosswind motion law. An analytical approximation for the mean mechanical power output is presented in terms of the performance coefficient of the pumping kite wind generator. Optimal control of the tether length rate is considered for the open-loop and closed-loop figure-of-eight trajectories. The influence of the kite control and of the tether sag on the kite traction power output is discussed.


Wind Speed Wind Power Mechanical Power Control Angle Mechanical Power Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Argatov, I., Silvennoinen, R.: Asymptotic modeling of unconstrained control of a tethered power kite moving along a given closed-loop spherical trajectory. Journal of Engineering Mathematics 72(1), 187–203 (2012). doi:  10.1007/s10665-011-9475-3 Google Scholar
  2. 2.
    Argatov, I., Rautakorpi, P., Silvennoinen, R.: Apparent wind load effects on the tether of a kite power generator. Journal ofWind Engineering and Industrial Aerodynamics 99(5), 1079– 1088 (2011). doi:  10.1016/j.jweia.2011.07.010 Google Scholar
  3. 3.
    Argatov, I., Rautakorpi, P., Silvennoinen, R.: Estimation of the mechanical energy output of the kite wind generator. Renewable Energy 34(6), 1525–1532 (2009). doi:  10.1016/j.renene. 2008.11.001Google Scholar
  4. 4.
    Argatov, I., Silvennoinen, R.: Energy conversion efficiency of the pumping kite wind generator. Renewable Energy 35(5), 1052–1060 (2010). doi:  10.1016/j.renene.2009.09.006 Google Scholar
  5. 5.
    Argatov, I., Silvennoinen, R.: Structural optimization of the pumping kite wind generator. Structural Multidiscplinary Optimization 40(1–6), 585–595 (2010). doi: 10. 1007/s00158 - 009-0391-3Google Scholar
  6. 6.
    Canale, M., Fagiano, L., Milanese, M.: KiteGen: A revolution in wind energy generation. Energy 34(2), 355–361 (2009). doi:  10.1016/ Google Scholar
  7. 7.
    Canale, M., Fagiano, L., Milanese, M.: Power kites for wind energy generation - fast predictive control of tethered airfoils. IEEE Control Systems Magazine 27(6), 25–38 (2007). doi: 10. 1109/MCS.2007.909465Google Scholar
  8. 8.
    Chen,W. F., Lui, E. M. (eds.): Handbook of Structural Engineering. 2nd ed. CRC Press, Boca Raton (2005)Google Scholar
  9. 9.
    Diehl, M.: Real-time optimization for large scale nonlinear processes. Ph.D. Thesis, University of Heidelberg, 2001.
  10. 10.
    Fagiano, L.: Control of tethered airfoils for high-altitude wind energy generation. Ph.D. Thesis, Politecnico di Torino, 2009. http ://lorenzofagiano. altervista. org/docs/PhD thesis Fagiano Final.pdfGoogle Scholar
  11. 11.
    Hobbs, S. E.: A Quantitative Study of Kite Performance in Natural Wind with Application to Kite Anemometry. Ph.D. Thesis, Cranfield University, 1986. uk/bitstream/1826/918/2/sehphd2a.pdf
  12. 12.
    Houska, B., Diehl, M.: Optimal control for power generating kites. In: Proceedings of the 9th European Control Conference, pp. 3560–3567, Kos, Greece, 2–5 July 2007.
  13. 13.
    Houska, B., Diehl, M.: Optimal control of towing kites. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2693–2697, San Diego, CA, USA, 13–15 Dec 2006. doi:  10.1109/CDC.2006.377210
  14. 14.
    Ilzh¨ofer, A., Houska, B., Diehl, M.: Nonlinear MPC of kites uner varying wind conditions for a new class of large-scale wind power generators. International Journal of Robust and Nonlinear Control 17(17), 1590–1599 (2007). doi:  10.1002/rnc.1210
  15. 15.
    Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980). doi: 10.2514/3. 48021Google Scholar
  16. 16.
    Macdonald, J. H. G., Larose, G. L.: A unified approach to aerodynamic damping and drag/lift instabilities, and its application to dry inclined cable galloping. Journal Fluids Struct. 22(2), 229–252 (2006). doi:  10.1016/j.jfluidstructs.2005.10.002 Google Scholar
  17. 17.
    Roberts, B. W., Shepard, D. H., Caldeira, K., Cannon, M. E., Eccles, D. G., Grenier, A. J., Freidin, J. F.: Harnessing High-Altitude Wind Power. IEEE Transaction on Energy Conversion 22(1), 136–144 (2007). doi:  10.1109/TEC.2006.889603
  18. 18.
    Varma, S. K., Goela, J. S.: Effect of wind loading on the design of a kite tether. Journal of Energy 6(5), 342–343 (1982). doi:  10.2514/3.48051 Google Scholar
  19. 19.
    Wellicome, J. F.: Some comments on the relative merits of various wind propulsion devices. Journal of Wind Engineering and Industrial Aerodynamics 20(1–3), 111–142 (1985). doi:  10.1016/0167-6105(85)90015-7 Google Scholar
  20. 20.
    Williams, P., Lansdorp, B., Ockels, W. J.: Nonlinear Control and Estimation of a Tethered Kite in Changing Wind Conditions. AIAA Journal of Guidance, Control and Dynamics 31(3) (2008). doi:  10.2514/1.31604
  21. 21.
    Williams, P.: Optimal wind power extraction with a tethered kite. AIAA Paper 2006-6193. In: Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, CO, USA, 21–24 Aug 2006. doi:  10.2514/6.2006-6193
  22. 22.
    Williams, P., Lansdorp, B., Ockels, W.: Optimal Crosswind Towing and Power Generation with Tethered Kites. AIAA Journal of Guidance, Control, and Dynamics 31(1), 81–93 (2008). doi:  10.2514/1.30089

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of OuluDepartment of Mechanical EngineeringOuluFinland
  2. 2.Tampere University of TechnologyDepartment of MathematicsTampereFinland

Personalised recommendations