Advertisement

An Experimental Test Setup for Advanced Estimation and Control of an AirborneWind Energy System

  • Kurt Geebelen
  • Milan Vukov
  • Mario Zanon
  • Sébastien Gros
  • Andrew Wagner
  • Moritz Diehl
  • Dirk Vandepitte
  • Jan Swevers
  • Hammad Ahmad
Chapter
Part of the Green Energy and Technology book series (GREEN)

Abstract

This chapter gives a detailed description of a test setup developed at KU Leuven for the launch and recovery of unpropelled tethered airplanes. The airplanes are launched by bringing them up to flying speed while attached by a tether to the end of a rotating arm. In the development of the setup, particular care was taken to allow experimental validation of advanced estimation and control techniques such as moving horizon estimation and model predictive control. A detailed overview of the hardware, sensors and software used on this setup is given in this chapter. The applied estimation and control techniques are outlined in this chapter as well, and an analysis of the closed loop performance is given.

Keywords

Model Predictive Control Control Surface Inertial Measurement Unit Stereo Vision System Excessive Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by Research Council KUL: PFV/10/002 Optimization in Engineering Center OPTEC, GOA/10/09 MaNet and GOA/10/11 Global real- time optimal control of autonomous robots and mechatronic systems. Flemish Government: IOF/KP/SCORES4CHEM, FWO: PhD/postdoc grants and projects: G.0320.08 (convex MPC), G.0377.09 (Mechatronics MPC); IWT: PhD Grants, projects: SBO LeCoPro; Belgian Federal Science Policy Office: IUAP P7 (DYSCO, Dynamical systems, control and optimization, 2012-2017); EU: FP7- EMBOCON (ICT-248940), FP7-SADCO (MC ITN-264735), ERC ST HIGHWIND (259 166), Eurostars SMART, ACCM.

References

  1. 1.
    Bruyninckx, H.: Open robot control software: the OROCOS project. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA), Vol. 3, pp. 2523–2528, Seoul, Korea, 21–26 May 2001. doi:  10.1109/ROBOT.2001.933002
  2. 2.
    Eindhoven University of Technology: E-box project page. http://cstwiki.wtb.tue.nl/index.php?title=E-box. Accessed 17 July 2013
  3. 3.
    Ferreau, H. J.: Model predictive control algorithms for applications with millisecond timescales. Ph.D. Thesis, KU Leuven, 2011. https://lirias.kuleuven.be/bitstream/123456789/312147/1/phd ferreau.pdf
  4. 4.
    Ferreau, H. J., Kraus, T., Vukov, M., Saeys,W., Diehl, M.: High-speed moving horizon estimation based on automatic code generation. In: Proceedings of the 51st IEEE Annual Conference on Decision and Control, pp. 687–692, Maui, HI, USA, 10–13 Dec 2012. doi:  10.1109/CDC.2012.6426428
  5. 5.
    Gros, S., Zanon, M., Diehl, M.: Orbit Control for a Power Generating Airfoil Based on Non- linear MPC. In: Proceedings of the 2012 American Control Conference, pp. 137–142, Montréal, Canada, 27–29 June 2012. http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber = 6315367
  6. 6.
    Gros, S., Zanon, M., Vukov, M., Diehl, M.: Nonlinear MPC and MHE for Mechanical Multi-Body Systems with Application to Fast Tethered Airplanes. In: Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference, pp. 86–93, Leeuwenhorst, Netherlands, 23–27 Aug 2012. doi:  10.3182/20120823-5-NL-3013.00061
  7. 7.
    Houska, B.: Robustness and Stability Optimization of Open-Loop Controlled Power Generating Kites. M.Sc.Thesis, Ruprecht-Karls-Universit¨at, Heidelberg, 2007. http://www.kuleuven.be/optec/files/Houska2007a.pdf
  8. 8.
    Houska, B., Ferreau, H. J., Diehl, M.: ACADO Toolkit: An Open Source Framework for Automatic Control and Dynamic Optimization. Optimal Control Applications and Methods 32(3), 298–312 (2011). doi:  10.1002/oca.939
  9. 9.
    Ilzh¨ofer, A., Houska, B., Diehl, M.: Nonlinear MPC of kites under varying wind conditions for a new class of large-scale wind power generators. International Journal of Robust and Nonlinear Control 17(17), 1590–1599 (2007). doi:  10.1002/rnc.1210
  10. 10.
    Makani Power. http://www.makanipower.com/why-airborne-wind/. Accessed 11 July 2012
  11. 11.
    Quirynen, R., Vukov, M., Diehl, M.: Auto Generation of Implicit Integrators for Embedded NMPC with Microsecond Sampling Times. In: Proceedings of the 4th IFAC Nonlinear Model Predictive Control Conference, pp. 175–180, Leeuwenhorst, Netherlands, 23–27 Aug 2012. doi:  10.3182/20120823-5-NL-3013.00013

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kurt Geebelen
    • 1
  • Milan Vukov
    • 1
  • Mario Zanon
    • 1
  • Sébastien Gros
    • 1
  • Andrew Wagner
    • 1
  • Moritz Diehl
    • 1
  • Dirk Vandepitte
    • 2
  • Jan Swevers
    • 2
  • Hammad Ahmad
    • 3
  1. 1.KU LeuvenDepartment of Electrical EngineeringLeuvenBelgium
  2. 2.KU LeuvenDepartment of Mechanical EngineeringLeuvenBelgium
  3. 3.Mobile Marine Robotics Research CenterUniversity of LimerickLimerickIreland

Personalised recommendations