Airborne Wind Energy pp 235-247

Part of the Green Energy and Technology book series (GREEN)

Airborne Wind Energy Conversion Systems with Ultra High Speed Mechanical Power Transfer



A novel Airborne Wind Energy Conversion System with a ground-based electric generator is proposed. The construction uses two interacting tethered wings with a single motion transfer cable, separate from the tethers. The speed of tangential motion of the cable exceeds the speed of the wings, flying cross wind, and is further increased by a block and tackle mechanism, thus ensuring high rotational speed and low torque on the receiving shaft of the ground-based drivetrain. The drivetrain does not require a gearbox. This device is estimated to be more than 10 times less expensive than a conventional wind turbine with the same average power output.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahrens, U.: Wind-operated power generator. US Patent US 8,096,763, 17 Jan 2012Google Scholar
  2. 2.
    Argatov, I., Rautakorpi, P., Silvennoinen, R.: Apparent wind load effects on the tether of a kite power generator. Journal ofWind Engineering and Industrial Aerodynamics 99(5), 1079–1088 (2011). doi: 10.1016/j.jweia.2011.07.010 Google Scholar
  3. 3.
    Argatov, I., Rautakorpi, P., Silvennoinen, R.: Estimation of the mechanical energy output of the kite wind generator. Renewable Energy 34(6), 1525–1532 (2009). doi: 10.1016/j.renene. 2008.11.001Google Scholar
  4. 4.
    Baayen, J. H., Ockels, W. J.: Tracking control with adaption of kites. IET Control Theory and Applications 6(2), 182–191 (2012). doi: 10.1049/iet-cta.2011.0037
  5. 5.
    Canale, M., Fagiano, L., Milanese, M., Ippolito, M.: KiteGen project: control as key technology for a quantum leap in wind energy generators. In: Proceedings of the 2007 American Control Conference, pp. 3522–3528, New York, NY, USA, 9–13 July 2007. doi: 10.1109/ACC.2007.4282697
  6. 6.
    Diehl, M., Houska, B.: Wind Power via Fast Flying Kites: a Challenge for Optimization and Control. at - Automatisierungstechnik 57(10), 525–533 (2009). doi: 10.1524/auto.2009.0798
  7. 7.
    Fagiano, L.: Control of tethered airfoils for high-altitude wind energy generation. Ph.D. Thesis, Politecnico di Torino, 2009. http ://lorenzofagiano. altervista. org/docs/PhD thesis Fagiano Final.pdfGoogle Scholar
  8. 8.
    Fagiano, L., Milanese, M., Piga, D.: Optimization of airborne wind energy generators. International Journal of Robust and Nonlinear Control 22(18), 2055–2083 (2011). doi: 10.1002/rnc.1808 Google Scholar
  9. 9.
    Fechner, U., Schmehl, R.: Design of a Distributed Kite Power Control System. In: Proceedings of the 2012 IEEE International Conference on Control Applications, pp. 800–805, Dubrovnik, Croatia, 3–5 Oct 2012. doi: 10.1109/CCA.2012.6402695
  10. 10.
    Ferreau, H. J., Houska, B., Geebelen, K., Diehl, M.: Real-Time Control of a Kite-Model using an Auto-Generated Nonlinear MPC Algorithm. In: Proceedings of the 18th IFAC World Congress, Vol. 18.1, pp. 2488–2493, Milano, Italy, 28 Aug–2 Sept 2011. doi: 10. 3182/20110828-6-IT-1002.01117Google Scholar
  11. 11.
    Furey, A. D. J.: Evolutionary Robotics in High Altitude Wind Energy Applications. Ph.D. Thesis, University of Sussex, 2011.
  12. 12.
    Gillis, J., Goos, J., Geebelen, K., Swevers, J., Diehl, M.: Optimal periodic control of power harvesting tethered airplanes. In: Proceedings of the 2012 American Control Conference, pp. 2527–2532, Montr´eal, Canada, 27–29 June 2012. all.jsp?arnumber = 6314924
  13. 13.
    Goldstein, L.: Theoretical analysis of an airborne wind energy conversion system with a ground generator and fast motion transfer. Energy, 987–995 (2013). doi: 10.1016/
  14. 14.
    Griffith, S., Lynn, P., Montague, D., Hardham, C.: Faired tether for wind power generation systems. Patent WO 2009/142762, 26 Nov 2009Google Scholar
  15. 15.
    Hau, E.: Wind Turbines: Fundamentals, Technologies, Application, Economics. 2nd ed. Springer, Berlin-Heidelberg (2006)Google Scholar
  16. 16.
    Houska, B., Diehl, M.: Optimal control for power generating kites. In: Proceedings of the 9th European Control Conference, pp. 3560–3567, Kos, Greece, 2–5 July 2007.
  17. 17.
    Houska, B., Diehl, M.: Optimal control of towing kites. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2693–2697, San Diego, CA, USA, 13–15 Dec 2006. doi: 10.1109/CDC.2006.377210
  18. 18.
    Houska, B., Diehl, M.: Robustness and Stability Optimization of Power Generating Kite Systems in a Periodic Pumping Mode. In: Proceedings of the IEEE Multi-Conference on Systems and Control, pp. 2172–2177, Yokohama, Japan, 8–10 Sept 2010. doi: 10.1109/CCA.2010.5611288
  19. 19.
    Jamieson, P.: Innovation in wind turbine design. John Wiley & Sons, Ltd., New York (2011). doi: 10.1002/9781119975441
  20. 20.
    Lansdorp, B., Ockels, W. J.: Comparison of concepts for high-altitude wind energy generation with ground based generator. Paper presented at the 2nd China International Renewable Energy Equipment and Technology Exhibition and Conference, Beijing, China, 25–27 May 2005.
  21. 21.
    Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980). doi: 10.2514/3.48021 Google Scholar
  22. 22.
    Ockels,W. J.: Laddermill, a novel concept to exploit the energy in the airspace. Aircraft Design 4(2–3), 81–97 (2001). doi: 10.1016/S1369-8869(01)00002-7 Google Scholar
  23. 23.
    Schmehl, R.: Kiting for Wind Power. Wind Systems Magazine 07/2012, 36–43 (2012).
  24. 24.
    Williams, P., Lansdorp, B., Ockels, W.: Optimal Crosswind Towing and Power Generation with Tethered Kites. AIAA Journal of Guidance, Control, and Dynamics 31(1), 81–93 (2008). doi: 10.2514/1.30089

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Agoura HillsUSA

Personalised recommendations