Numerical Trajectory Optimization for Airborne Wind Energy Systems Described by High Fidelity Aircraft Models

  • Greg HornEmail author
  • Sébastien Gros
  • Moritz Diehl
Part of the Green Energy and Technology book series (GREEN)


In order to study design tradeoffs in the development of an AWE system, it is useful to develop a code to optimize a trajectory for arbitrary objective function and constraints. We present a procedure for using direct collocation to optimize such a trajectory where a model is specified as a set of differential–algebraic equations. The six degree of freedom single-kite, pumping-mode AWE model developed in  Chap. 10 is summarized, and two typical periodic optimal control problems are formulated and solved: maximum power and number of cycles per retraction. Finally, a procedure for optimally transitioning between two fixed trajectories is presented.


Optimal Control Problem Initial Guess Differential State Aircraft Model Direct Collocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andersson, J., A° kesson, J., Diehl, M.: CasADi – A symbolic package for automatic differentiation and optimal control. In: Forth, S., Hovland, P., Phipps, E., Utke, J., Walther, A. (eds.) Recent Advances in Algorithmic Differentiation, Vol. 87, Lecture Notes in Computational Science and Engineering, pp. 297–307. Springer, Berlin (2012). doi: Google Scholar
  2. Argatov, I., Silvennoinen, R.: Energy conversion efficiency of the pumping kite wind generator. Renewable Energy 35(5), 1052–1060 (2010). doi:  10.1016/j.renene.2009.09.006 Google Scholar
  3. Biegler, L.: Nonlinear Programming. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2010). doi:  10.1137/1.9780898719383
  4. Fagiano, L., Milanese, M., Piga, D.: Optimization of airborne wind energy generators. International Journal of Robust and Nonlinear Control 22(18), 2055–2083 (2011). doi:  10.1002/rnc.1808 Google Scholar
  5. Geebelen, K., Ahmad, H., Vukov, M., Gros, S., Swevers, J., Diehl, M.: An experimental test set-up for launch/recovery of an Airborne Wind Energy (AWE) system. In: Proceedings of the 2012 American Control Conference, pp. 5813–5818, Montr′eal, Canada, 27–29 June 2012. all.jsp?arnumber = 6315033
  6. Gros, S., Diehl, M.: A Relaxation Strategy for the Optimization of Airborne Wind Energy Systems. In: Proceedings of the European Control Conference (ECC13), Zurich, Switzerland, 17–19 July 2013Google Scholar
  7. Houska, B.: Robustness and Stability Optimization of Open-Loop Controlled Power Generating Kites. M.Sc.Thesis, Ruprecht-Karls-Universit¨at, Heidelberg, 2007.
  8. Houska, B., Diehl, M.: Optimal control for power generating kites. In: Proceedings of the 9th European Control Conference, pp. 3560–3567, Kos, Greece, 2–5 July 2007.
  9. Houska, B., Diehl, M.: Optimal control of towing kites. In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2693–2697, San Diego, CA, USA, 13–15 Dec 2006. doi:  10.1109/CDC.2006.377210
  10. Jones, E., Oliphant, T., Peterson, P.: SciPy: Open source scientific tools for Python. http :// (2001). Accessed 5 July 2013
  11. Kameswaran, S., Biegler, L.: Simultaneous dynamic optimization strategies: Recent advances and challenges. Computers and Chemical Engineering 30(11–12), 1560–1575 (2006). doi:  10.1016/j.compchemeng.2006.05.034
  12. Loyd, M. L.: Crosswind kite power. Journal of Energy 4(3), 106–111 (1980). doi: 10.2514/3. 48021Google Scholar
  13. Sternberg, J., Gros, S., Houska, B., Diehl, M.: Approximate Robust Optimal Control of Periodic Systems with Invariants and High-Index Differential Algebraic Systems. In: Proceedings of the 7th IFAC Symposium on Robust Control Design, pp. 678–683, Aalborg, Denmark, 20– 22 June 2012. doi:  10.3182/20120620-3-DK-2025.00089
  14. Sternberg, J., Goit, J., Gros, S., Meyers, J., Diehl, M.: Robust and Stable Periodic Flight of Power Generating Kite Systems in a Turbulent Wind Flow Field. In: Proceedings of the 15th IFAC Workshop on Control Applications of Optimization, Rimini, Italy, 13–16 Sept 2012. doi:  10.3182/20120913-4-IT-4027.00009
  15. W¨achter, A., Biegler, L.: On the Implementation of a Primal-Dual Interior Point Filter Line a Search Algorithm for Large-Scale Nonlinear Programming. Mathematical Programming 106(1), 25–57 (2006). doi:  10.1007/s10107-004-0559-y Google Scholar
  16. Williams, P., Lansdorp, B., Ockels, W.: Optimal Crosswind Towing and Power Generation with Tethered Kites. AIAA Journal of Guidance, Control, and Dynamics 31(1), 81–93 (2008). doi:  10.2514/1.30089

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentKU LeuvenLeuvenBelgium

Personalised recommendations