Implementation of State Transfer Hamiltonians in Spin Chains with Magnetic Resonance Techniques

Chapter

Abstract

Nuclear spin systems and magnetic resonance techniques have provided a fertile platform for experimental investigation of quantum state transfer in spin chains. From the first observation of polarization transfer, predating the formal definition of quantum state transfer, to the realization of state transfer simulations in small molecules and in larger solid-state spin systems, the experiments have drawn on the strengths of nuclear magnetic resonance (NMR), in particular on its long history of well-developed control techniques. NMR implementations have been invaluable both as proof-of-principle demonstrations of quantum state transfer protocols and to explore dynamics occurring in real systems that go beyond what can be analytically solved or numerically simulated. In addition, control techniques developed in these systems to engineer the Hamiltonians required for transport can be adopted in potentially scalable quantum information processing architectures. In this contribution we describe recent results and outline future directions of research in magnetic-resonance based implementations of quantum state transfer in spin chains.

References

  1. 1.
    S. Bose, Phys. Rev. Lett. 91(20), 207901 (2003)ADSGoogle Scholar
  2. 2.
    M. Mariantoni, H. Wang, T. Yamamoto, M. Neeley, R.C. Bialczak, Y. Chen, M. Lenander, E. Lucero, A.D. O’Connell, D. Sank, M. Weides, J. Wenner, Y. Yin, J. Zhao, A.N. Korotkov, A.N. Cleland, J.M. Martinis, Science 334(6052), 61 (2011)ADSGoogle Scholar
  3. 3.
    D. Loss, D.P. DiVincenzo, Phys. Rev. A 57(1), 120 (1998)ADSGoogle Scholar
  4. 4.
    X. Li, Y. Wu, D. Steel, D. Gammon, T.H. Stievater, D.S. Katzer, D. Park, C. Piermarocchi, L.J. Sham, Science 301(5634), 809 (2003)ADSGoogle Scholar
  5. 5.
    G. Ciaramicoli, I. Marzoli, P. Tombesi, Phys. Rev. A 75, 032348 (2007)ADSGoogle Scholar
  6. 6.
    L.M. Duan, E. Demler, M.D. Lukin, Phys. Rev. Lett. 91(9), 090402 (2003)ADSGoogle Scholar
  7. 7.
    J. Simon, W.S. Bakr, R. Ma, M.E. Tai, P.M. Preiss, M. Greiner, Nature 472(7343), 307 (2011)ADSGoogle Scholar
  8. 8.
    B.E. Kane, Nature 393, 133 (1998)ADSGoogle Scholar
  9. 9.
    J. Wrachtrup, F. Jelezko, J. Phys.: Condens. Matter 18(21), S807 (2006)Google Scholar
  10. 10.
    Z. Madi, B. Brutscher, T. Schulte-Herbruggen, R. Bruschweiler, R. Ernst, Chem. Phys. Lett. 268(3), 300 (1997)ADSGoogle Scholar
  11. 11.
    P. Cappellaro, C. Ramanathan, D.G. Cory, Phys. Rev. Lett. 99(25), 250506 (2007)ADSGoogle Scholar
  12. 12.
    P. Cappellaro, C. Ramanathan, D.G. Cory, Phys. Rev. A 76(3), 032317 (2007)ADSGoogle Scholar
  13. 13.
    J. Zhang, X. Peng, D. Suter, Phys. Rev. A 73, 062325 (2006)ADSGoogle Scholar
  14. 14.
    D.D. Traficante, Concepts Magn. Reson. 3(1), 49 (1991)Google Scholar
  15. 15.
    N. Bloembergen, Physica 15, 386 (1949)ADSGoogle Scholar
  16. 16.
    A. Abragam, M. Goldman, Rep. Prog. Phys. 41(3), 395 (1978)ADSGoogle Scholar
  17. 17.
    C. Ramanathan, App. Mag. Res. 34(3), 409 (2008)Google Scholar
  18. 18.
    T.D. Ladd, J.R. Goldman, F. Yamaguchi, Y. Yamamoto, E. Abe, K.M. Itoh, Phys. Rev. Lett. 89(1), 017901 (2002)ADSGoogle Scholar
  19. 19.
    D. Cory, R. Laflamme, E. Knill, L. Viola, T. Havel, N. Boulant, G. Boutis, E. Fortunato, S. Lloyd, R. Martinez, C. Negrevergne, M. Pravia, Y. Sharf, G. Teklemariam, Y. Weinstein, W. Zurek, Fort. der Phys. 48(9–11), 875 (2000)ADSGoogle Scholar
  20. 20.
    B. Criger, G. Passante, D. Park, R. Laflamme, Phil. Trans. R. Soc. A 370(1976), 4620 (2012)ADSGoogle Scholar
  21. 21.
    C. Ramanathan, N. Boulant, Z. Chen, D.G. Cory, I. Chuang, M. Steffen, Quantum Inf. Process. 3, 15 (2004)MATHGoogle Scholar
  22. 22.
    J.A. Jones, Prog. Nucl. Magn. Reson. Spectrosc. 59(2), 91 (2011)Google Scholar
  23. 23.
    C. Negrevergne, T.S. Mahesh, C.A. Ryan, M. Ditty, F. Cyr-Racine, W. Power, N. Boulant, T. Havel, D.G. Cory, R. Laflamme, Phys. Rev. Lett. 96(17), 170501 (2006)ADSGoogle Scholar
  24. 24.
    A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961)Google Scholar
  25. 25.
    R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press, Oxford, 1987)Google Scholar
  26. 26.
    C.P. Slichter, Principles of Magnetic Resonance, 3rd edn. (Springer, New York, 1996)Google Scholar
  27. 27.
    P.T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy (Oxford Science Publications, Oxford, 1991)Google Scholar
  28. 28.
    M.H. Levitt, Prog. Nucl. Magn. Reson. Spectrosc. 18(2), 61 (1986)ADSGoogle Scholar
  29. 29.
    E.M. Fortunato, M.A. Pravia, N. Boulant, G. Teklemariam, T.F. Havel, D.G. Cory, J. Chem. Phys. 116, 7599 (2002)ADSGoogle Scholar
  30. 30.
    M.A. Pravia, N. Boulant, J. Emerson, A. Farid, E.M. Fortunato, T.F. Havel, R. Martinez, D.G. Cory, J. Chem. Phys. 119, 9993 (2003)ADSGoogle Scholar
  31. 31.
    N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbuggen, S. Glaser, J. Magn. Res. 172, 296 (2005)ADSGoogle Scholar
  32. 32.
    J. Zhang, G.L. Long, W. Zhang, Z. Deng, W. Liu, Z. Lu, Phys. Rev. A 72, 012331 (2005)ADSGoogle Scholar
  33. 33.
    D.G. Cory, A.F. Fahmy, T.F. Havel, Proc. Nat. Acad. Sci. 94(5), 1634 (1997)ADSGoogle Scholar
  34. 34.
    N.A. Gershenfeld, I.L. Chuang, Science 275(5298), 350 (1997)MathSciNetMATHGoogle Scholar
  35. 35.
    D. Deutsch, Proc. R. Soc. A 400(1818), 97 (1985)MathSciNetADSMATHGoogle Scholar
  36. 36.
    J.A. Jones, M. Mosca, J. Chem. Phys. 109(5), 1648 (1998)ADSGoogle Scholar
  37. 37.
    M.S. Anwar, J.A. Jones, D. Blazina, S.B. Duckett, H.A. Carteret, Phys. Rev. A 70, 032324 (2004)ADSGoogle Scholar
  38. 38.
    I.L. Chuang, L.M.K. Vandersypen, X. Zhou, D.W. Leung, S. Lloyd, Nature 393(6681), 143 (1998)ADSGoogle Scholar
  39. 39.
    R. Cleve, A. Ekert, C. Macchiavello, M. Mosca, Proc. R. Soc. Lond. A: Math. Phys. Eng. Sci. 454(1969), 339 (1998)MathSciNetADSMATHGoogle Scholar
  40. 40.
    M. Kawamura, T. Morimoto, T. Kumaya, R. Sawae, K. Takarabe, Y. Manmoto, Int. J. Quantum Chem. 105(6), 750 (2005)ADSGoogle Scholar
  41. 41.
    N. Linden, H. Barjat, R. Freeman, Chem. Phys. Lett. 296(1–2), 61 (1998)ADSGoogle Scholar
  42. 42.
    L. Grover, in Proceedings of 28th Annual ACM Symposium on Theory of Computing (STOC), Philadephia, 1996, pp. 212–219Google Scholar
  43. 43.
    J.A. Jones, M. Mosca, R.H. Hansen, Nature 393(6683), 344 (1998)ADSGoogle Scholar
  44. 44.
    I.L. Chuang, N. Gershenfeld, M. Kubinec, Phys. Rev. Lett. 80, 3408 (1998)ADSGoogle Scholar
  45. 45.
    C.S. Yannoni, M.H. Sherwood, D.C. Miller, I.L. Chuang, L.M.K. Vandersypen, M.G. Kubinec, Appl. Phys. Lett. 75(22), 3563 (1999)ADSGoogle Scholar
  46. 46.
    Y. Weinstein, T. Havel, J. Emerson, N. Boulant, M. Saraceno, S. Lloyd, D.G. Cory, J. Chem. Phys. 121, 6117 (2004)ADSGoogle Scholar
  47. 47.
    L. Vandersypen, M. Steffen, G. Breyta, C. Yannoni, M. Sherwood, I. Chuang, Nature 414, 883 (2001)ADSGoogle Scholar
  48. 48.
    S.S. Somaroo, C.H. Tseng, T.F. Havel, R. Laflamme, D.G. Cory, Phys. Rev. Lett. 82, 5381 (1999)ADSGoogle Scholar
  49. 49.
    C.H. Tseng, S. Somaroo, Y. Sharf, E. Knill, R. Laflamme, T.F. Havel, D.G. Cory, Phys. Rev. A 61, 012302 (1999)ADSGoogle Scholar
  50. 50.
    J. Du, N. Xu, X. Peng, P. Wang, S. Wu, D. Lu, Phys. Rev. Lett. 104, 030502 (2010)ADSGoogle Scholar
  51. 51.
    C.A. Ryan, M. Laforest, J.C. Boileau, R. Laflamme, Phys. Rev. A 72, 062317 (2005)ADSGoogle Scholar
  52. 52.
    J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, R. Han, Phys. Rev. Lett. 88, 137902 (2002)ADSGoogle Scholar
  53. 53.
    A. Mitra, K. Sivapriya, A. Kumar, J. Magn. Reson. 187(2), 306 (2007)ADSGoogle Scholar
  54. 54.
    Y.S. Weinstein, S. Lloyd, J. Emerson, D.G. Cory, Phys. Rev. Lett. 89, 157902 (2002)MathSciNetADSGoogle Scholar
  55. 55.
    D.G. Cory, M.D. Price, W. Maas, E. Knill, R. Laflamme, W.H. Zurek, T.F. Havel, S.S. Somaroo, Phys. Rev. Lett. 81(10), 2152 (1998)ADSGoogle Scholar
  56. 56.
    L. Viola, E.M. Fortunato, M.A. Pravia, E. Knill, R. Laflamme, D.G. Cory, Science 293(5537), 2059 (2001)ADSGoogle Scholar
  57. 57.
    E.M. Fortunato, L. Viola, J. Hodges, G. Teklemariam, D.G. Cory, New J. Phys. 4(1), 5 (2002)ADSGoogle Scholar
  58. 58.
    N. Boulant, L. Viola, E.M. Fortunato, D.G. Cory, Phys. Rev. Lett. 94, 130501 (2005)ADSGoogle Scholar
  59. 59.
    P. Cappellaro, J.S. Hodges, T.F. Havel, D.G. Cory, J. Chem. Phys. 125, 044514 (2006)ADSGoogle Scholar
  60. 60.
    J.S. Hodges, P. Cappellaro, T.F. Havel, R. Martinez, D.G. Cory, Phys. Rev. A 75(4), 042320 (2007)MathSciNetADSGoogle Scholar
  61. 61.
    P. Cappellaro, J.S. Hodges, T.F. Havel, D.G. Cory, Phys. Rev. A 75, 042321 (2007)MathSciNetADSGoogle Scholar
  62. 62.
    E. Knill, I. Chuang, R. Laflamme, Phys. Rev. A 57(5), 3348 (1998)MathSciNetADSGoogle Scholar
  63. 63.
    G. Bodenhausen, H. Kogler, R. Ernst, J. Magn. Reson. 58(3), 370 (1984)ADSGoogle Scholar
  64. 64.
    J. Keeler, Understanding NMR Spectroscopy (Wiley, New York, 2010)Google Scholar
  65. 65.
    J. Baum, R. Tycko, A. Pines, Phys. Rev. A 32, 3435 (1985)ADSGoogle Scholar
  66. 66.
    R. Freeman, Prog. Nucl. Magn. Reson. Spectrosc. 32(1), 59 (1998)Google Scholar
  67. 67.
    C.A. Ryan, C. Negrevergne, M. Laforest, E. Knill, R. Laflamme, Phys. Rev. A 78(1), 012328 (2008)ADSGoogle Scholar
  68. 68.
    V.F. Krotov, Global Methods in Optimal Control Theory (Marcel Dekker Inc., New York, 1996)MATHGoogle Scholar
  69. 69.
    L. Viola, S. Lloyd, Phys. Rev. A 58, 2733 (1998)MathSciNetADSGoogle Scholar
  70. 70.
    K. Khodjasteh, D.A. Lidar, Phys. Rev. Lett. 95(18), 180501 (2005)ADSGoogle Scholar
  71. 71.
    G.S. Uhrig, Phys. Rev. Lett. 98(10), 100504 (2007)ADSGoogle Scholar
  72. 72.
    E.L. Hahn, Phys. Rev. 80(4), 580 (1950)ADSMATHGoogle Scholar
  73. 73.
    H.Y. Carr, E.M. Purcell, Phys. Rev. 94(3), 630 (1954)ADSGoogle Scholar
  74. 74.
    S. Meiboom, D. Gill, Rev. Sci. Instr. 29(8), 688 (1958)ADSGoogle Scholar
  75. 75.
    N. Bloembergen, R.V. Pound, Phys. Rev. 95, 8 (1954)ADSGoogle Scholar
  76. 76.
    W. Zhang, D.G. Cory, Phys. Rev. Lett. 80, 1324 (1998)ADSGoogle Scholar
  77. 77.
    G.S. Boutis, P. Cappellaro, H. Cho, C. Ramanathan, D.G. Cory, J. Magn. Reson. 161, 132 (2003)ADSGoogle Scholar
  78. 78.
    Y.S. Yen, A. Pines, J. Chem. Phys. 78(6), 3579 (1983)ADSGoogle Scholar
  79. 79.
    M. Munowitz, A. Pines, Principle and applications of multiple-quantum NMR, in Advances in Chemical Physics, vol. 66 (Wiley, New York, 1987)Google Scholar
  80. 80.
    M. Munowitz, A. Pines, M. Mehring, J. Chem. Phys. 86(6), 3172 (1987)ADSGoogle Scholar
  81. 81.
    J. Waugh, L. Huber, U. Haeberlen, Phys. Rev. Lett. 20, 180 (1968)ADSGoogle Scholar
  82. 82.
    U. Haeberlen, High Resolution NMR in Solids: Selective Averaging (Academic, New York, 1976)Google Scholar
  83. 83.
    U. Haeberlen, J. Waugh, Phys. Rev. 175(2), 453 (1968)ADSGoogle Scholar
  84. 84.
    W.K. Rhim, D.D. Elleman, K.U. Schreiber, R.W. Vaughan, J. Chem. Phys. 60, 4595 (1974)ADSGoogle Scholar
  85. 85.
    A. Ajoy, P. Cappellaro (2012). ArXiv:1208.3656Google Scholar
  86. 86.
    S. Schirmer, Lagrangian and Hamiltonian Methods for Nonlinear Control 2006. Lecture Notes in Control and Information Sciences, vol. 366 (Springer, Berlin/Heidelberg/New York, 2007), pp. 293–304Google Scholar
  87. 87.
    J. Zhang, M. Ditty, D. Burgarth, C.A. Ryan, C.M. Chandrashekar, M. Laforest, O. Moussa, J. Baugh, R. Laflamme, Phys. Rev. A 80, 012316 (2009)ADSGoogle Scholar
  88. 88.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge/New York, 2000)MATHGoogle Scholar
  89. 89.
    J. Zhang, K.B. Whaley, Phys. Rev. A 71(5), 052317 (2005)MathSciNetADSGoogle Scholar
  90. 90.
    P. Cappellaro, J. Emerson, N. Boulant, C. Ramanathan, S. Lloyd, D.G. Cory, Phys. Rev. Lett. 94, 020502 (2005)ADSGoogle Scholar
  91. 91.
    J.S. Lee, A.K. Khitrin, J. Chem. Phys. 121(9), 3949 (2004)ADSGoogle Scholar
  92. 92.
    J.S. Lee, A.K. Khitrin, Phys. Rev. A 71, 062338 (2005)ADSGoogle Scholar
  93. 93.
    J.S. Lee, T. Adams, A.K. Khitrin, New J. Phys. 9(4), 83 (2007)ADSGoogle Scholar
  94. 94.
    N. Khaneja, S.J. Glaser, Phys. Rev. A 66, 060301 (2002)MathSciNetADSGoogle Scholar
  95. 95.
    H. Yuan, S.J. Glaser, N. Khaneja, Phys. Rev. A 76(1), 012316 (2007)ADSGoogle Scholar
  96. 96.
    M. Nimbalkar, R. Zeier, J.L. Neves, S.B. Elavarasi, H. Yuan, N. Khaneja, K. Dorai, S.J. Glaser, Phys. Rev. A 85, 012325 (2012)ADSGoogle Scholar
  97. 97.
    M. Christandl, N. Datta, T.C. Dorlas, A. Ekert, A. Kay, A.J. Landahl, Phys. Rev. A 71(3), 032312 (2005)ADSGoogle Scholar
  98. 98.
    S.G. Schirmer, H. Fu, A.I. Solomon, Phys. Rev. A 63, 063410 (2001)ADSGoogle Scholar
  99. 99.
    C. Altafini, J. Math. Phys. 43(5), 2051 (2002)MathSciNetADSMATHGoogle Scholar
  100. 100.
    J.S. Hodges, J.C. Yang, C. Ramanathan, D.G. Cory, Phys. Rev. A 78(1), 010303 (2008)ADSGoogle Scholar
  101. 101.
    P. Cappellaro, L. Viola, C. Ramanathan, Phys. Rev. A 83(3), 032304 (2011)ADSGoogle Scholar
  102. 102.
    S.R. Clark, C.M. Alves, D. Jaksch, New J. Phys. 7, 124 (2005)ADSGoogle Scholar
  103. 103.
    D. Burgarth, K. Maruyama, F. Nori, Phys. Rev. A 79, 020305 (2009)ADSGoogle Scholar
  104. 104.
    C. DiFranco, M. Paternostro, M.S. Kim, Phys. Rev. Lett. 101(23), 230502 (2008)ADSGoogle Scholar
  105. 105.
    G.A. Álvarez, M. Mishkovsky, E.P. Danieli, P.R. Levstein, H.M. Pastawski, L. Frydman, Phys. Rev. A 81(6), 060302 (2010)Google Scholar
  106. 106.
    D. Burgarth, V. Giovannetti, Phys. Rev. Lett. 99(10), 100501 (2007)ADSGoogle Scholar
  107. 107.
    J. Zhang, N. Rajendran, X. Peng, D. Suter, Phys. Rev. A 76, 012317 (2007)ADSGoogle Scholar
  108. 108.
    G.S. Boutis, D. Greenbaum, H. Cho, D.G. Cory, C. Ramanathan, Phys. Rev. Lett. 92(13), 137201 (2004)ADSGoogle Scholar
  109. 109.
    D. Greenbaum, M. Kindermann, C. Ramanathan, D.G. Cory, Phys. Rev. B 71, 054403 (2005)ADSGoogle Scholar
  110. 110.
    G.R. Khutsishvili, Sov. Phys. Uspekhi 8(5), 743 (1966)ADSGoogle Scholar
  111. 111.
    A.G. Redfield, Phys. Rev. 116(2), 315 (1959)ADSGoogle Scholar
  112. 112.
    D.K. Sodickson, J.S. Waugh, Phys. Rev. B 52, 6467 (1995)ADSGoogle Scholar
  113. 113.
    J.b. Waugh, Mol. Phys. 95(5), 731 (1998)Google Scholar
  114. 114.
    R. Bruschweiler, R. Ernst, Chem. Phys. Lett. 264(3–4), 393 (1997)ADSGoogle Scholar
  115. 115.
    A.K. Khitrin, B.M. Fung, J. Chem. Phys. 111, 7480 (1999)ADSGoogle Scholar
  116. 116.
    M.I. Kay, R.A. Young, A.S. Posner, Nature 204(4963), 1050 (1964)ADSGoogle Scholar
  117. 117.
    J.S. Prener, J. Electrochem. Soc. 114(1), 77 (1967)Google Scholar
  118. 118.
    W. Zhang, P. Cappellaro, N. Antler, B. Pepper, D.G. Cory, V.V. Dobrovitski, C. Ramanathan, L. Viola, Phys. Rev. A 80(5), 052323 (2009)ADSGoogle Scholar
  119. 119.
    C. Ramanathan, P. Cappellaro, L. Viola, D.G. Cory, New J. Phys. 13(10), 103015 (2011)ADSGoogle Scholar
  120. 120.
    E. Rufeil-Fiori, C.M. Sánchez, F.Y. Oliva, H.M. Pastawski, P.R. Levstein, Phys. Rev. A 79(3), 032324 (2009)ADSGoogle Scholar
  121. 121.
    W.V. der Lugt, W. Caspers, Physica 30(8), 1658 (1964)ADSGoogle Scholar
  122. 122.
    N. Leroy, E. Bres, Eur. Cell Mater. 2, 36 (2001)Google Scholar
  123. 123.
    R. Mazelsky, R. Hopkins, W. Kramer, J. Cryst. Growth 3–4, 260 (1968)ADSGoogle Scholar
  124. 124.
    R. Mazelsky, R.C. Ohlmann, K. Steinbruegge, J. Electrochem. Soc. 115(1), 68 (1968)Google Scholar
  125. 125.
    S. Oishi, T. Kamiya, Nippon Kagaku Kaishi 9, 800 (1994)Google Scholar
  126. 126.
    K. Teshima, S. Lee, K. Yubuta, Y. Kameno, T. Suzuki, T. Shishido, M. Endo, S. Oishi, Cryst. Growth Des. 9(9), 3832 (2009)Google Scholar
  127. 127.
    K. Teshima, S. Lee, T. Ishizaki, S. Mori, C. Mori, K. Yubuta, T. Ichiki, T. Shishido, S. Oishi, Cryst. Eng. Comm. 13(6), 1749 (2011)Google Scholar
  128. 128.
    K. Teshima, S. Lee, M. Sakurai, Y. Kameno, K. Yubuta, T. Suzuki, T. Shishido, M. Endo, S. Oishi, Cryst. Growth Des. 9(6), 2937 (2009)Google Scholar
  129. 129.
    C.K. Hughes JM, Cameron M, Am. Miner. 74, 870 (1989)Google Scholar
  130. 130.
    G. Cho, J.P. Yesinowski, Chem. Phys. Lett. 205(1), 1 (1993)ADSGoogle Scholar
  131. 131.
    Y. Pan, M.E. Fleet, Rev. Miner. Geochem. 48(1), 13 (2002)Google Scholar
  132. 132.
    Y. Pan, N. Chen, J.A. Weil, M.J. Nilges, Am. Miner. 87(10), 1333 (2002)Google Scholar
  133. 133.
    N. Chen, Y. Pan, J.A. Weil, Am. Miner. 87(1), 37 (2002)Google Scholar
  134. 134.
    G. Kaur, P. Cappellaro, New J. Phys. 14(8), 083005 (2012)ADSGoogle Scholar
  135. 135.
    M. Engelsberg, I.J. Lowe, J.L. Carolan, Phys. Rev. B 7, 924 (1973)ADSGoogle Scholar
  136. 136.
    A. Sur, I.J. Lowe, Phys. Rev. B 12, 4597 (1975)ADSGoogle Scholar
  137. 137.
    L.B. Moran, J.K. Berkowitz, J.P. Yesinowski, Phys. Rev. B 45, 5347 (1992)ADSGoogle Scholar
  138. 138.
    L.B. Moran, J.P. Yesinowski, Chem. Phys. Lett. 222(4), 363 (1994)ADSGoogle Scholar
  139. 139.
    G. Cho, J.P. Yesinowski, J. Chem. Phys. 100(39), 15716 (1996)Google Scholar
  140. 140.
    H.J. Cho, P. Cappellaro, D.G. Cory, C. Ramanathan, Phys. Rev. B 74(22), 224434 (2006)ADSGoogle Scholar
  141. 141.
    G. Cho, C.N. Chau, J.P. Yesinowski, J. Phys. Chem. C 112, 6165 (2008)Google Scholar
  142. 142.
    E.B. Fel’dman, S. Lacelle, J. Chem. Phys. 107(18), 7067 (1997)Google Scholar
  143. 143.
    A.K. Khitrin, Chem. Phys. Lett. 274, 217 (1997)ADSGoogle Scholar
  144. 144.
    J.R. Goldman, T.D. Ladd, F. Yamaguchi, Y. Yamamoto, E. Abe, K.M. Itoh, Laser Spectroscopy (World Scientific, Singapore, 2002), pp. 333–336Google Scholar
  145. 145.
    M. Christandl, N. Datta, A. Ekert, A.J. Landahl, Phys. Rev. Lett. 92, 187902 (2004)ADSGoogle Scholar
  146. 146.
    M.E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957)MATHGoogle Scholar
  147. 147.
    C. Ramanathan, H. Cho, P. Cappellaro, G.S. Boutis, D.G. Cory, Chem. Phys. Lett. 369, 311 (2003)ADSGoogle Scholar
  148. 148.
    S. Doronin, I. Maksimov, E. Fel’dman, JETP 91, 597 (2000)Google Scholar
  149. 149.
    E. Lieb, T. Schultz, D. Mattis, Ann. Phys. 16, 407 (1961)MathSciNetADSMATHGoogle Scholar
  150. 150.
    J. Fitzsimons, J. Twamley, Phys. Rev. Lett. 97(9), 090502 (2006)ADSGoogle Scholar
  151. 151.
    M. Markiewicz, M. Wiesniak, Phys. Rev. A 79(5), 054304 (2009)ADSGoogle Scholar
  152. 152.
    N.Y. Yao, L. Jiang, A.V. Gorshkov, Z.X. Gong, A. Zhai, L.M. Duan, M.D. Lukin, Phys. Rev. Lett. 106(4), 040505 (2011)ADSGoogle Scholar
  153. 153.
    A. Kay, Phys. Rev. Lett. 98(1), 010501 (2007)ADSGoogle Scholar
  154. 154.
    A. Kay, Int. J. Quantum Inf. 8(4), 641 (2010)MathSciNetMATHGoogle Scholar
  155. 155.
    G.M.P. C. Di Franco, M. Paternostro, Int. J. Quantum Inf. 6, 659 (2008)Google Scholar
  156. 156.
    S.R. Clark, A. Klein, M. Bruderer, D. Jaksch, New J. Phys. 9(6), 202 (2007)MathSciNetADSGoogle Scholar
  157. 157.
    D. Burgarth, K. Maruyama, F. Nori, New J. Phys. 13(1), 013019 (2011)ADSGoogle Scholar
  158. 158.
    C. Di Franco, M. Paternostro, M.S. Kim, Phys. Rev. Lett. 102, 187203 (2009)ADSGoogle Scholar
  159. 159.
    M.K. Henry, C. Ramanathan, J.S. Hodges, C.A. Ryan, M.J. Ditty, R. Laflamme, D.G. Cory, Phys. Rev. Lett. 99(22), 220501 (2007)ADSGoogle Scholar
  160. 160.
    A. Davis, G. Estcourt, J. Keeler, E. Laue, J. Titman, J. Magn. Reson. 105(2), 167 (1993)ADSGoogle Scholar
  161. 161.
    P. Cappellaro, Quantum information processing in multi-spin systems. PhD dissertation, Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 2006Google Scholar
  162. 162.
    E.B. Fel’dman, S. Lacelle, Chem. Phys. Lett. 253(1–2), 27 (1996)Google Scholar
  163. 163.
    S. Doronin, E. Fel’dman, I. Maximov, J. Magn. Reson. 171(1), 37 (2004)Google Scholar
  164. 164.
    D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Phys. Rev. A 64(5), 052312 (2001)ADSGoogle Scholar
  165. 165.
    T.J. Osborne, N. Linden, Phys. Rev. A 69(5), 052315 (2004)ADSGoogle Scholar
  166. 166.
    Y. Li, T. Shi, B. Chen, Z. Song, C.P. Sun, Phys. Rev. A 71, 022301 (2005)ADSGoogle Scholar
  167. 167.
    A. Wojcik, T. Luczak, P. Kurzynski, A. Grudka, T. Gdala, M. Bednarska, Phys. Rev. A 72, 034303 (2005)MathSciNetADSGoogle Scholar
  168. 168.
    G. Gualdi, V. Kostak, I. Marzoli, P. Tombesi, Phys. Rev. A 78(2), 022325 (2008)ADSGoogle Scholar
  169. 169.
    A. Ajoy, P. Cappellaro (2012). ArXiv:1207.5580Google Scholar
  170. 170.
    B. Furman, in HFI/NQI 2007, ed. by A. Pasquevich, M. Rentería, E. Saitovitch, H. Petrilli (Springer/Berlin, Heidelberg, 2008), pp. 459–465Google Scholar
  171. 171.
    H.G. Krojanski, D. Suter, Phys. Rev. Lett. 93(9), 090501 (2004)ADSGoogle Scholar
  172. 172.
    T.W. Borneman, Control methods for spin-actuator multinode quantum information processing. Ph.D. thesis, Massachusetts Institute of Technology, 2012Google Scholar
  173. 173.
    J. Le Moigne, J.L. Gallani, P. Wautelet, M. Moroni, L. Oswald, C. Cruz, Y. Galerne, J.C. Arnault, R. Duran, M. Garrett, Langmuir 14(26), 7484 (1998)Google Scholar
  174. 174.
    M. Mannini, L. Sorace, L. Gorini, F.M. Piras, A. Caneschi, A. Magnani, S. Menichetti, D. Gatteschi, Langmuir 23(5), 2389 (2007)Google Scholar
  175. 175.
    M.V.G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, M.D. Lukin, Science 316, 1312 (2007)Google Scholar
  176. 176.
    P. Cappellaro, L. Jiang, J.S. Hodges, M.D. Lukin, Phys. Rev. Lett. 102(21), 210502 (2009)ADSGoogle Scholar
  177. 177.
    N. Yao, L. Jiang, A. Gorshkov, P. Maurer, G. Giedke, J. Cirac, M. Lukin, Nat. Commun. 3, 800 (2012)ADSGoogle Scholar
  178. 178.
    Y. Ping, B.W. Lovett, S.C. Benjamin, E.M. Gauger, Phys. Rev. Lett. 110, 100503 (2013)ADSGoogle Scholar
  179. 179.
    C.D. Weis, A. Schuh, A. Batra, A. Persaud, I.W. Rangelow, J. Bokor, C.C. Lo, S. Cabrini, E. Sideras-Haddad, G.D. Fuchs, R. Hanson, D.D. Awschalom, T. Schenkel, J. Vac. Sci. Technol. B 26(6), 2596 (2008)Google Scholar
  180. 180.
    D.M. Toyli, C.D. Weis, G.D. Fuchs, T. Schenkel, D.D. Awschalom, Nano Lett. 10(8), 3168 (2010)ADSGoogle Scholar
  181. 181.
    B. Naydenov, V. Richter, J. Beck, M. Steiner, P. Neumann, G. Balasubramanian, J. Achard, F. Jelezko, J. Wrachtrup, R. Kalish, App. Phys. Lett. 96(16), 163108 (2010)ADSGoogle Scholar
  182. 182.
    P. Spinicelli, A. Drau, L. Rondin, F. Silva, J. Achard, S. Xavier, S. Bansropun, T. Debuisschert, S. Pezzagna, J. Meijer, V. Jacques, J.F. Roch, New J. Phys. 13(2), 025014 (2011)ADSGoogle Scholar
  183. 183.
    R. Hanson, F.M. Mendoza, R.J. Epstein, D.D. Awschalom, Phys. Rev. Lett. 97(8), 087601 (2006)ADSGoogle Scholar
  184. 184.
    P.C. Maurer, J.R. Maze, P.L. Stanwix, L. Jiang, A.V. Gorshkov, A.A. Zibrov, B. Harke, J.S. Hodges, A.S. Zibrov, A. Yacoby, D. Twitchen, S.W. Hell, R.L. Walsworth, M.D. Lukin, Nat. Phys. 6, 912 (2010)Google Scholar
  185. 185.
    E. Rittweger, D. Wildanger, S.W. Hell, Europhys. Lett. 86(1), 14001 (2009)ADSGoogle Scholar
  186. 186.
    A. Wójcik, T. Łuczak, P. Kurzyński, A. Grudka, T. Gdala, M. Bednarska, Phys. Rev. A 75, 022330 (2007)ADSGoogle Scholar
  187. 187.
    L. Banchi, T.J.G. Apollaro, A. Cuccoli, R. Vaia, P. Verrucchi, New J. Phys. 13(12), 123006 (2011)ADSGoogle Scholar
  188. 188.
    P.C. Maurer, G. Kucsko, C. Latta, L. Jiang, N.Y. Yao, S.D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D.J. Twitchen, J.I. Cirac, M.D. Lukin, Science 336(6086), 1283 (2012)ADSGoogle Scholar
  189. 189.
    N. Bar-Gill, L.M. Pham, A. Jarmola, D. Budker, R.L. Walsworth (2012). ArXiv:1211.7094Google Scholar
  190. 190.
    J.M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P.R. Hemmer, A. Yacoby, R. Walsworth, M.D. Lukin, Nat. Phys. 4(10), 810 (2008)Google Scholar
  191. 191.
    P. Maletinsky, S. Hong, M.S. Grinolds, B. Hausmann, M.D. Lukin, R.L. Walsworth, M. Loncar, A. Yacoby, Nat. Nanotechnol. 7(5), 320 (2012)ADSGoogle Scholar
  192. 192.
    P. Rabl, S.J. Kolkowitz, F.H.L. Koppens, J.G.E. Harris, P. Zoller, M.D. Lukin, Nat. Phys. 6(8), 602 (2010)Google Scholar
  193. 193.
    J. Cai, A. Retzker, F. Jelezko, M.B. Plenio, Nat. Phys. 9(3), 168 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Nuclear Science and Engineering Department, Research Laboratory of ElectronicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations