The Relationship between Stress and Conflict Handling Style in an ODR Environment

  • Paulo Novais
  • Davide Carneiro
  • Marco Gomes
  • José Neves
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7856)


Up until now, most approaches to Online Dispute Resolution focused on ”traditional” problems such as the generation of solutions, the support to negotiation or the definition of strategies. Although these problems are evidently valid and important ones, research should also start to consider new potential issues that arise from technological evolution. In this paper we analyse the new challenges that emerge from resolving conflicts over telecommunications, namely in what concerns the lack of contextual information about parties. Specifically we build on a previous approach to stress estimation from the analysis of interaction and behavioural patterns. From the data gathered in a previous experiment we now trained classifiers that allow to assess stress in real-time, in a personalized and empirical way. With these classifiers, we were able to study how stress and conflict coping strategies evolve together. This paper briefly describes these classifiers, focusing afterwards on the results of the experiment.


Online Dispute Resolution Human-Computer Interaction Behavioural Analysis Negotiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    James, W.: What is an Emotion? Mind 9(34), 188–205 (1884)CrossRefGoogle Scholar
  2. 2.
    Lodder, A., Thiessen, E.: The role of artificial intelligence in online dispute resolution. In: Workshop on Online Dispute Resolution at the International Conference on Artificial Intelligence and Law, Edinburgh, UK (2003)Google Scholar
  3. 3.
    Healey, J., Picard, R.W.: Detecting stress during realworld driving tasks using physiological sensors. IEEE Transactions on Intelligent Transportation Systems 6(2), 156–166 (2005)CrossRefGoogle Scholar
  4. 4.
    Katsch, E., Rifkin, J.: Online dispute resolution – resolving conflicts in cyberspace. Jossey-Bass Wiley Company, San Francisco (2001)Google Scholar
  5. 5.
    Bharat, A., Solomon, J.S.: The effect of task complexity and conflict handling styles on computer-supported negotiations. Information and Management 37(4), 161–168 (2000)CrossRefGoogle Scholar
  6. 6.
    Kilmann, R.H., Thomas, K.W.: Developing a Forced-Choice Measure of Conflict-Handling Behavior: The MODE Instrument. Educational and Psychological Measurement (1977)Google Scholar
  7. 7.
    Liao, W., Zhang, W., Zhu, Z., Ji, Q., Gray, W.: Toward a decision-theoretic framework for affect recognition and user assistance. International Journal of Human-Computer Studies 64(9), 847–873 (2006)CrossRefGoogle Scholar
  8. 8.
    Notini, J.: Effective alternatives analysis in mediation: “batna/watna” analysis demystified (2005) (last accessed August 2012)Google Scholar
  9. 9.
    Rahim, M.A.: A measure of styles of handling interpersonal conflict. The Academy of Management Journal 26(2), 368–376 (1983)CrossRefGoogle Scholar
  10. 10.
    Andrade, F., Novais, P., Carneiro, D., Zeleznikow, J., Neves, J.: Using BATNAs and WATNAs in Online Dispute Resolution. In: Nakakoji, K., Murakami, Y., McCready, E. (eds.) JSAI-isAI 2009. LNCS (LNAI), vol. 6284, pp. 5–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Carneiro, D., Novais, P., Andrade, F., Zeleznikow, J., Neves, J.: Using Case-based Reasoning to Support Alternative Dispute Resolution. In: de Leon F. de Carvalho, A.P., Rodríguez-González, S., De Paz Santana, J.F., Rodríguez, J.M.C. (eds.) Distributed Computing and Artificial Intelligence. AISC, vol. 79, pp. 123–130. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Carneiro, D., Novais, P., Andrade, F., Neves, J.: Retrieving Information in Online Dispute Resolution Platforms: A Hybrid Method. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Law, University of Pittsburgh School of Law. ACM (2011) ISBN: 978-1-4503-0755-0Google Scholar
  13. 13.
    Gomes, M., Carneiro, D., Novais, P., Neves, J.: Modelling stress recognition in conflict resolution scenarios. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part I. LNCS, vol. 7208, pp. 533–544. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Simon, T., Friedman, R.: Conflict style and coping with role conflict: An extension of the uncertainty model of work stress. International Journal of Conflict Management 13(3), 236–257 (2002)CrossRefGoogle Scholar
  15. 15.
    Carneiro, D., Gomes, M., Novais, P., Neves, J.: Developing dynamic conflict resolution models based on the interpretation of personal conflict styles. In: Antunes, L., Pinto, H.S. (eds.) EPIA 2011. LNCS, vol. 7026, pp. 44–58. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Carneiro, D., Castillo, J.C., Novais, P., Fernández-Caballero, A., Neves, J.: Multimodal Behavioural Analysis for Non-invasive Stress Detection. Expert Systems with Applications 39(18), 13376–13389 (2012), CrossRefGoogle Scholar
  17. 17.
    Castillo, J.C., Rivas-Casado, A., Fernández-Caballero, A., López, M.T., Martínez-Tomás, R.: A multisensory monitoring and interpretation framework based on the model–view–controller paradigm. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011, Part I. LNCS, vol. 6686, pp. 441–450. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Fernández-Caballero, A., Castillo, J.C., Martínez-Cantos, J., Martínez-Tomás, R.: Optical flow or image subtraction in human detection from infrared camera on mobile robot. Robotics and Autonomous Systems 58(12), 1273–1281 (2010)CrossRefGoogle Scholar
  19. 19.
    Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo (1993)Google Scholar
  20. 20.
    Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning (1998)Google Scholar
  21. 21.
    Holmes, G., Donkin, A., Witten, I.H.: Weka: A machine learning workbench. In: Proc. Second Australia and New Zealand Conference on Intelligent Information Systems, Brisbane, Australia (1994)Google Scholar
  22. 22.
    Raiffa, H.: Art and Science of Negotiation. Harvard University Press (1982)Google Scholar
  23. 23.
    Selye, H.: The Stress of Life. McGraw-Hill (1978)Google Scholar
  24. 24.
    Aha, D., Kibler, D.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Paulo Novais
    • 1
  • Davide Carneiro
    • 1
  • Marco Gomes
    • 1
  • José Neves
    • 1
  1. 1.CCTC/Department of InformaticsUniversity of MinhoBragaPortugal

Personalised recommendations