Evaluating User Privacy in Bitcoin

  • Elli Androulaki
  • Ghassan O. Karame
  • Marc Roeschlin
  • Tobias Scherer
  • Srdjan Capkun
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7859)


Bitcoin is quickly emerging as a popular digital payment system. However, in spite of its reliance on pseudonyms, Bitcoin raises a number of privacy concerns due to the fact that all of the transactions that take place are publicly announced in the system.

In this paper, we investigate the privacy provisions in Bitcoin when it is used as a primary currency to support the daily transactions of individuals in a university setting. More specifically, we evaluate the privacy that is provided by Bitcoin (i) by analyzing the genuine Bitcoin system and (ii) through a simulator that faithfully mimics the use of Bitcoin within a university. In this setting, our results show that the profiles of almost 40% of the users can be, to a large extent, recovered even when users adopt privacy measures recommended by Bitcoin. To the best of our knowledge, this is the first work that comprehensively analyzes, and evaluates the privacy implications of Bitcoin.


Bitcoin user privacy privacy definitions experimental evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bitcoin – Wikipedia,
  2. 2.
    Bitcoin Block Explorer,
  3. 3.
    Flexcoin –The Bitcoin Bank,
  4. 4.
    Bitcoin Gateway, A Peer-to-peer Bitcoin Vault and Payment Network (2011),
  5. 5.
    Bitcoin: Tempering the Digital Ring of Gyges or Implausible Pecuniary Privacy (2011), or
  6. 6.
    Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash SystemGoogle Scholar
  7. 7.
    Babaioff, M., Dobzinski, S., Oren, S., Zohar, A.: On Bitcoin and Red Balloons. CoRR (2011)Google Scholar
  8. 8.
    Brands, S.: Electronic Cash on the Internet. In: Proceedings of the Symposium on the Network and Distributed System Security (1995)Google Scholar
  9. 9.
    Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact E-Cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Chaum, D., Fiat, A., Naor, M.: Untraceable electronic cash. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990), Google Scholar
  11. 11.
    Clark, J., Essex, A.: CommitCoin: Carbon Dating Commitments with Bitcoin (Short Paper). In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 390–398. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Díaz, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Karame, G., Androulaki, E., Capkun, S.: Double-Spending Fast Payments in Bitcoin. In: Proceedings of ACM CCS (2012)Google Scholar
  15. 15.
    Pfitzmann, A., Hansen, M.: Anonymity, Unlinkability, Undetectability, Unobservability, Pseudonymity, and Identity Management – A Consolidated Proposal for Terminology. Fachterminologie Datenschutz und Datensicherheit, 111–144 (2008)Google Scholar
  16. 16.
    Reid, F., Harrigan, M.: An Analysis of Anonymity in the Bitcoin System. CoRR (2011),
  17. 17.
    Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Shokri, R., Theodorakopoulos, G., Boudec, J.L., Hubaux, J.P.: Quantifying location privacy. In: Proceedings of the IEEE Symposium on Security and Privacy (2011)Google Scholar
  19. 19.
    Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: is a correction for chance necessary? In: 26th Annual International Conference on Machine Learning, ICML (2009)Google Scholar
  20. 20.
    Vinh, N.X., Epps, J., Bailey, J.: Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization and Correction for Chance. Journal of Machine Learning Research (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Elli Androulaki
    • 1
  • Ghassan O. Karame
    • 2
  • Marc Roeschlin
    • 1
  • Tobias Scherer
    • 1
  • Srdjan Capkun
    • 1
  1. 1.ETH ZurichZuerichSwitzerland
  2. 2.NEC Laboratories EuropeHeidelbergGermany

Personalised recommendations