Advertisement

Parallel and Dynamic Searchable Symmetric Encryption

  • Seny Kamara
  • Charalampos Papamanthou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7859)

Abstract

Searchable symmetric encryption (SSE) enables a client to outsource a collection of encrypted documents in the cloud and retain the ability to perform keyword searches without revealing information about the contents of the documents and queries. Although efficient SSE constructions are known, previous solutions are highly sequential. This is mainly due to the fact that, currently, the only method for achieving sub-linear time search is the inverted index approach (Curtmola, Garay, Kamara and Ostrovsky, CCS ’06) which requires the search algorithm to access a sequence of memory locations, each of which is unpredictable and stored at the previous location in the sequence. Motivated by advances in multi-core architectures, we present a new method for constructing sub-linear SSE schemes. Our approach is highly parallelizable and dynamic. With roughly a logarithmic number of cores in place, searches for a keyword w in our scheme execute in o(r) parallel time, where r is the number of documents containing keyword w (with more cores, this bound can go down to O(logn), i.e., independent of the result size r). Such time complexity outperforms the optimal Θ(r) sequential search time—a similar bound holds for the updates. Our scheme also achieves the following important properties: (a) it enjoys a strong notion of security, namely security against adaptive chosen-keyword attacks; (b) compared to existing sub-linear dynamic SSE schemes (e.g., Kamara, Papamanthou, Roeder, CCS ’12), updates in our scheme do not leak any information, apart from information that can be inferred from previous search tokens; (c) it can be implemented efficiently in external memory (with logarithmic I/O overhead). Our technique is simple and uses a red-black tree data structure; its security is proven in the random oracle model.

Keywords

Searchable encryption parallel search cloud storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloom, B.: Space/time trade-offs in hash coding with allowable errors. Communications of the ACM 13(7), 422–426 (1970)zbMATHCrossRefGoogle Scholar
  2. 2.
    Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Chang, Y.-C., Mitzenmacher, M.: Privacy preserving keyword searches on remote encrypted data. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 577–594. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press (2009)Google Scholar
  6. 6.
    Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: Improved definitions and efficient constructions. In: Computer and Communications Security (CCS), pp. 79–88 (2006)Google Scholar
  7. 7.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on Theory of Computing (STOC), pp. 169–178 (2009)Google Scholar
  8. 8.
    Goh, E.-J.: Secure indexes. IACR Cryptology ePrint Archive, 2003:216 (2003)Google Scholar
  9. 9.
    Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious RAMs. Journal of the ACM 43(3), 431–473 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Golle, P., Staddon, J., Waters, B.: Secure conjunctive keyword search over encrypted data. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 31–45. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryption. In: Computer and Communications Security (CCS), pp. 965–976 (2012)Google Scholar
  12. 12.
    Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman & Hall/CRC (2008)Google Scholar
  13. 13.
    Kurosawa, K., Ohtaki, Y.: UC-secure searchable symmetric encryption. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 285–298. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. 14.
    Lorch, J.R., Mickens, J.W., Parno, B., Raykova, M., Schiffman, J.: Toward practical private access to data centers via parallel ORAM. IACR Cryptology ePrint Archive, 2012:133 (2012)Google Scholar
  15. 15.
    Merkle, R.C.: A digital signature based on a conventional encryption function. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 369–378. Springer, Heidelberg (1988)Google Scholar
  16. 16.
    Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunctive field keyword search. In: Lim, C.H., Yung, M. (eds.) WISA 2004. LNCS, vol. 3325, pp. 73–86. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Shi, E., Bethencourt, J., Chan, T., Song, D., Perrig, A.: Multi-dimensional range query over encrypted data. In: IEEE Symposium on Security and Privacy (SSP), pp. 350–364 (2007)Google Scholar
  18. 18.
    Song, D., Wagner, D., Perrig, A.: Practical techniques for searching on encrypted data. In: IEEE Symposium on Security and Privacy (SSP), pp. 44–55 (2000)Google Scholar
  19. 19.
    Stefanov, E., Shi, E., Song, D.: Towards practical oblivious ram. In: Network and Distributed System Security Symposium, NDSS (2012)Google Scholar
  20. 20.
    van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P., Jonker, W.: Computationally efficient searchable symmetric encryption. In: Jonker, W., Petković, M. (eds.) SDM 2010. LNCS, vol. 6358, pp. 87–100. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Seny Kamara
    • 1
  • Charalampos Papamanthou
    • 2
  1. 1.Microsoft ResearchUSA
  2. 2.UC BerkeleyUSA

Personalised recommendations