Coupon Collector’s Problem for Fault Analysis against AES — High Tolerance for Noisy Fault Injections

  • Yu Sasaki
  • Yang Li
  • Hikaru Sakamoto
  • Kazuo Sakiyama
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7859)

Abstract

In this paper, we propose a new technique for Square Differential Fault Analysis (DFA) against AES that can recover a secret key even with a large number of noisy fault injections, while the previous approaches of the Square DFA cannot work with noise. This makes the attack more realistic because assuming the 100% accuracy of obtaining intended fault injections is usually impossible. Our success lies in the discovery of a new mechanism of identifying the right key guess by exploiting the coupon collector’s problem and its variant. Our attack parameterizes the number of noisy fault injections. If the number of noisy faults is set to 0, the analysis becomes exactly the same as the previous Square DFAs. Then, our attack can work even with a large number of noisy faults. Thus our work can be viewed as a generalization of the previous Square DFAs with respect to the number of tolerable noisy fault injections.

Keywords

AES Fault analysis DFA Noisy fault model SQUARE DFA Coupon collector’s problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fischer, W.: Aspects of the development of secure and fault-resistant hardware. In: FDTC, pp. 18–22 (2008)Google Scholar
  2. 2.
    Guilley, S., Sauvage, L., Danger, J.L., Selmane, N.: Fault injection resilience. In: FDTC, pp. 51–65 (2010)Google Scholar
  3. 3.
    Satoh, A., Sugawara, T., Homma, N., Aoki, T.: High-Performance Concurrent Error Detection Scheme for AES Hardware. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 100–112. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Blömer, J., Seifert, J.-P.: Fault Based Cryptanalysis of the Advanced Encryption Standard (AES). In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 162–181. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Dusart, P., Letourneux, G., Vivolo, O.: Differential Fault Analysis on A.E.S. In: Zhou, J., Yung, M., Han, Y. (eds.) ACNS 2003. LNCS, vol. 2846, pp. 293–306. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Giraud, C.: DFA on AES. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.) AES 2004. LNCS, vol. 3373, pp. 27–41. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Moradi, A., Shalmani, M.T.M., Salmasizadeh, M.: A Generalized Method of Differential Fault Attack Against AES Cryptosystem. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 91–100. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Piret, G., Quisquater, J.-J.: A Differential Fault Attack Technique against SPN Structures, with Application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Daemen, J., Rijmen, V.: AES Proposal: Rijndael (1998)Google Scholar
  10. 10.
    Phan, R.C.-W., Yen, S.-M.: Amplifying Side-Channel Attacks with Techniques from Block Cipher Cryptanalysis. In: Domingo-Ferrer, J., Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 135–150. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Derbez, P., Fouque, P.-A., Leresteux, D.: Meet-in-the-Middle and Impossible Differential Fault Analysis on AES. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 274–291. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Kim, C.H.: Efficient methods for exploiting faults induced at AES middle rounds. Cryptology ePrint Archive, Report 2011/349 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yu Sasaki
    • 1
  • Yang Li
    • 2
  • Hikaru Sakamoto
    • 2
  • Kazuo Sakiyama
    • 2
  1. 1.NTT Secure Platform LaboratoriesJapan
  2. 2.The University of Electro-CommunicationsJapan

Personalised recommendations