A Scalable Scheme for Privacy-Preserving Aggregation of Time-Series Data

  • Marc Joye
  • Benoît Libert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7859)

Abstract

Suppose that a set of multiple users uploads in every time period encrypted values of some data. The considered problem is how an untrusted data aggregator can compute the sum of all users’ values but nothing more. A solution was recently given by Shi et al. (NDSS 2011). However, as advocated by the authors, the proposed encryption scheme suffers from some limitations. In particular, its usage is restricted to small plaintext spaces. This paper presents a practical scheme which, advantageously, can accommodate large plaintext spaces. Somewhat surprisingly, it comes with an efficient security reduction, regardless of the number of users. Furthermore, the proposed scheme requires a minimal number of interactions, is efficient for both encryption and decryption/aggregation and can operate in an off-line/on-line mode.

Keywords

Private aggregation smart metering homomorphic encryption large data sets 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ács, G., Castelluccia, C.: I have a dream! (differentially private smart metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Denning, D.E., et al. (eds.) 1st ACM Conference on Computer and Communications Security, pp. 399–416. ACM Press (1993)Google Scholar
  3. 3.
    Bellare, M., Rogaway, P.: The exact security of digital signatures - how to sign with RSA and Rabin. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 399–416. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Castelluccia, C., Chan, A.C.-F., Mykletun, E., Tsudik, G.: Efficient and provably secure aggregation of encrypted data in wireless sensor networks. ACM Transactions on Sensor Networks 5(3), Article 20 (2009)Google Scholar
  8. 8.
    Hubert Chan, T.-H., Shi, E., Song, D.: Privacy-preserving stream aggregation with fault tolerance. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 200–214. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Coron, J.-S.: On the exact security of full domain hash. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 229–235. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Dent, A.W.: A note on game-hopping proofs. Cryptology ePrint Archive: Report 2006/260 (2006)Google Scholar
  12. 12.
    Dwork, C.: Differential privacy: A survey of results. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: Privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Even, S., Goldreich, O., Micali, S.: On-line/off-line digital schemes. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 263–275. Springer, Heidelberg (1990)Google Scholar
  15. 15.
    Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via homomorphic encryption. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 226–238. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Icart, T.: How to hash into elliptic curves. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 303–316. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Jawurek, M., Kerschbaum, F.: Fault-tolerant privacy-preserving statistics. In: Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 221–238. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Jawurek, M., Kerschbaum, F., Danezis, G.: Privacy technologies for smart grids – A survey of options. Technical Report MSR-TR-2012-119, Microsoft Research (November 2012)Google Scholar
  19. 19.
    Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 175–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  20. 20.
    Li, F., Luo, B., Liu, P.: Secure information aggregation for smart grids using homomorphic encryption. In: 2010 First IEEE International Conference on Smart Grid Communications, SmartGridComm (2010)Google Scholar
  21. 21.
    Lin, H.-Y., Tzeng, W.-G., Shen, S.-T., Lin, B.-S.P.: A practical smart metering system supporting privacy preserving billing and load monitoring. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 544–560. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    McCurley, K.S.: A key distribution system equivalent to factoring. Journal of Cryptology 1(2), 95–105 (1988)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series with transformation and encryption. In: Elmagarmid, A.K., Agrawal, D. (eds.) 2010 ACM SIGMOD International Conference on Management of Data (SIGMOD 2010), pp. 735–746. ACM Press (2010)Google Scholar
  25. 25.
    Shi, E., Hubert Chan, T.-H., Rieffel, E.G., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: Network and Distributed System Security Symposium (NDSS 2011). The Internet Society (2011)Google Scholar
  26. 26.
    Shmuely, Z.: Composite Diffie-Hellman public key generating systems hard to break. Technical Report 356, Israel Institute of Technology, Computer Science Department, Technion (February 1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marc Joye
    • 1
  • Benoît Libert
    • 1
  1. 1.TechnicolorCesson-Sévigné CedexFrance

Personalised recommendations