Extracting and Normalizing Temporal Expressions in Clinical Data Requests from Researchers

  • Tianyong Hao
  • Alex Rusanov
  • Chunhua Weng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8040)

Abstract

Automatic translation of clinical researcher data requests to executable database queries is instrumental to an effective interface between clinical researchers and “Big Clinical Data”. A necessary step towards this goal is to parse ample temporal expressions in free-text researcher requests. This paper reports a novel algorithm called TEXer. It uses heuristic rule and pattern learning for extracting and normalizing temporal expressions in researcher requests. Based on 400 real clinical queries with human annotations, we compared our method with four baseline methods. TEXer achieved a precision of 0.945 and a recall of 0.858, outperforming all the baseline methods. We conclude that TEXer is an effective method for temporal expression extraction from free-text clinical data requests.

Keywords

temporal expression extraction clinical request pattern learning 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lonsdale, D.W., Tustison, C., Parker, C.G., Embley, D.W.: Assessing Clinical Trial Eligibility with Logic Expression Queries. Data & Knowledge Engineering 66(1), 3–17 (2008)CrossRefGoogle Scholar
  2. 2.
    Hruby, G.W., Boland, M.R., et al.: Characterization of the Biomedical Query Mediation Process. In: Proc. of AMIA 2013 Clinical Research Informatics Summit, San Francisco, CA, March 18-22, pp. 89–93 (2013)Google Scholar
  3. 3.
    Strötgen, J., Gertz, M.: Heideltime: High Quality Rule-based Extraction and Normalization of Temporal Expressions. In: Proc. of the Workshop on Semantic Evaluation, pp. 321–324. ACL (2010)Google Scholar
  4. 4.
    Pustejovsky, J., Verhagen, M.: Semeval-2010 Task 13: Evaluating Events, Time Expressions, and Temporal Relations (tempeval-2). In: Proc. of the Workshop on Semantic Evaluations, pp. 112–116. ACL (2009)Google Scholar
  5. 5.
    Verhagen, M., Sauri, R., Caselli, T., Pustejovsky, J.: Semeval-2010 Task 13: Tempeval-2. In: Proc. of the Workshop on Semantic Evaluation, pp. 57–62. ACL (2010)Google Scholar
  6. 6.
    Pustejovsky, P., Castaño, J., et al.: Timeml: Robust Specification of Event and Temporal Expressions in Text. In: Proc. of the IWCS-5 Fifth International (2003)Google Scholar
  7. 7.
    Sohn, S., Wagholikar, K., Li, D., et al.: Comprehensive Temporal Information Detection from Clinical Text: Medical Events, Time, and Tlink Identification. J. Am. Med. Inform. Assoc. (2013), doi:10.1136/amiajnl-2013-00162Google Scholar
  8. 8.
    Tang, B., Wu., Y., et al.: A Hybrid System for Temporal Information Extraction from Clinical Text. J. Am. Med. Inform. Assoc. (2013), doi:10.1136/amiajnl-2013-001635Google Scholar
  9. 9.
    Tao, C., He, Y., Poland, G., Chute, C., Yang, H.: Ontology-based Time Information Representation of Vaccine Adverse Events in Vaers for Temporal Analysis. Journal of Biomedical Semantics 3(13) (2012)Google Scholar
  10. 10.
    Li, M., Patrick, J.: Extracting Temporal Information from Electronic Patient Records. In: Proc. of AMIA Annu. Symp. Proc., pp. 542–551 (2012)Google Scholar
  11. 11.
    Galescu, L., Blaylock, N.: A Corpus of Clinical Narratives Annotated with Temporal Information. In: Proc. of International Health Informatics Symposium, pp. 715–720 (2012)Google Scholar
  12. 12.
    Luo, Z., Johnson, S., Lai, A., Weng, C.: Extracting Temporal Constraints from Clinical Research Eligibility Criteria Using Conditional Random Fields. In: Proc. of AMIA Annual Symposium, pp. 843–852 (2011)Google Scholar
  13. 13.
    Mani, I., Wilson, G.: Automating Temporal Annotation with Tarsqi. In: Proc. of 38th Annual Meeting of the ACL, pp. 69–76 (2000)Google Scholar
  14. 14.
    Zhao, R., Do, Q., Roth, D.: A Robust Shallow Temporal Reasoning System. In: Proc. of NAACL-HLT Demo. (2012)Google Scholar
  15. 15.
    Bird, S.: Nltk: the Natural Languagetoolkit. In: Proc. of the COLING/ACL 2006 Interactive Presentation Sessions, pp. 69–72 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tianyong Hao
    • 1
  • Alex Rusanov
    • 2
  • Chunhua Weng
    • 1
  1. 1.Department of Biomedical InformaticsColumbia UniversityUSA
  2. 2.Department of AnesthesiologyColumbia UniversityUSA

Personalised recommendations