Advertisement

Agent-Based Models for Higher-Order Theory of Mind

  • Harmen de WeerdEmail author
  • Rineke Verbrugge
  • Bart Verheij
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 229)

Abstract

Agent-based models are a powerful tool for explaining the emergence of social phenomena in a society. In such models, individual agents typically have little cognitive ability. In this paper, we model agents with the cognitive ability to make use of theory of mind. People use this ability to reason explicitly about the beliefs, desires, and goals of others. They also take this ability further, and expect other people to have access to theory of mind as well. To explain the emergence of this higher-order theory of mind, we place agents capable of theory of mind in a particular negotiation game known as Colored Trails, and determine to what extent theory of mind is beneficial to computational agents. Our results show that the use of first-order theory of mind helps agents to offer better trades. We also find that second-order theory of mind allows agents to perform better than first-order colleagues, by taking into account competing offers that other agents may make. Our results suggest that agents experience diminishing returns on orders of theory of mind higher than level two, similar to what is seen in people. These findings corroborate those in more abstract settings.

Keywords

Goal Location Strategic Game Negotiation Game Game Setting Computational Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Premack, D., Woodruff, G.: Does the chimpanzee have a theory of mind? Behav. Brain Sci. 1(04), 515–526 (1978)CrossRefGoogle Scholar
  2. 2.
    Perner, J., Wimmer, H.: “John thinks that Mary thinks that...”. Attribution of second-order beliefs by 5 to 10 year old children. J. Exp. Child Psychol. 39(3), 437–471 (1985)Google Scholar
  3. 3.
    Apperly, I.: Mindreaders: The Cognitive Basis of “Theory of Mind”. Psychology Press, Hove (2011)Google Scholar
  4. 4.
    Hedden, T., Zhang, J.: What do you think I think you think?: Strategic reasoning in matrix games. Cognition 85(1), 1–36 (2002)CrossRefGoogle Scholar
  5. 5.
    Meijering, B., van Rijn, H., Taatgen, N., Verbrugge, R.: I do know what you think I think: Second-order theory of mind in strategic games is not that difficult. In: CogSci, Cognitive Science Society, pp. 2486–2491 (2011)Google Scholar
  6. 6.
    Tomasello, M.: Why we Cooperate. MIT Press, Cambridge (2009)Google Scholar
  7. 7.
    Penn, D., Povinelli, D.: On the lack of evidence that non-human animals possess anything remotely resembling a ‘theory of mind’. Philos. T. R. Soc. B 362(1480), 731–744 (2007)CrossRefGoogle Scholar
  8. 8.
    van der Vaart, E., Verbrugge, R., Hemelrijk, C.: Corvid re-caching without ‘theory of mind’: A model. PLoS ONE 7(3), e32904 (2012)Google Scholar
  9. 9.
    Verbrugge, R.: Logic and social cognition: The facts matter, and so do computational models. J. Philos. Logic 38, 649–680 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    van Santen, W., Jonker, C., Wijngaards, N.: Crisis decision making through a shared integrative negotiation mental model. Int. J. Emerg. M. 6, 342–355 (2009)CrossRefGoogle Scholar
  11. 11.
    Helmhout, J.: The Social Cognitive Actor. PhD thesis, University of Groningen (2006)Google Scholar
  12. 12.
    Wijermans, N., Jager, W., Jorna, R., van Vliet, T.: Modelling the dynamics of goal-driven and situated behavior. In: ESSA (2008)Google Scholar
  13. 13.
    Dykstra, P., Elsenbroich, C., Jager, W., de Lavalette, G.R., Verbrugge, R.: Put your money where your mouth is: The dialogical model DIAL for opinion dynamics. Journal of Artificial Societies and Social Simulation 16(3), 4 (2013)Google Scholar
  14. 14.
    Gal, Y., Grosz, B., Kraus, S., Pfeffer, A., Shieber, S.: Agent decision-making in open mixed networks. Artif. Intell. 174(18), 1460–1480 (2010)MathSciNetCrossRefGoogle Scholar
  15. 15.
    van Wissen, A., Gal, Y., Kamphorst, B., Dignum, M.: Human–agent teamwork in dynamic environments. Computers Human Behav. 28, 23–33 (2012)CrossRefGoogle Scholar
  16. 16.
    Bach, C., Perea, A.: Utility proportional beliefs (2011), http://epicenter.name/Research.html (accessed: September 27, 2012)
  17. 17.
    Kraus, S.: Strategic Negotiation in Multiagent Environments. MIT Press (2001)Google Scholar
  18. 18.
    Rosenschein, J., Zlotkin, G.: Rules of Encounter: Designing Conventions for Automated Negotiation Among Computers. MIT Press (1994)Google Scholar
  19. 19.
    Hiatt, L., Harrison, A., Trafton, J.: Accommodating human variability in human-robot teams through theory of mind. In: IJCAI, pp. 2066–2071. AAAI Press (2011)Google Scholar
  20. 20.
    Camerer, C., Ho, T., Chong, J.: A cognitive hierarchy model of games. Q. J. Econ. 119(3), 861–898 (2004)CrossRefzbMATHGoogle Scholar
  21. 21.
    Bacharach, M., Stahl, D.O.: Variable-frame level-n theory. Games and Econ. Behav. 32(2), 220–246 (2000)CrossRefzbMATHGoogle Scholar
  22. 22.
    Rosenthal, R.: A bounded-rationality approach to the study of noncooperative games. Int. J. Game Theory 18(3), 273–292 (1989)CrossRefzbMATHGoogle Scholar
  23. 23.
    McKelvey, R., Palfrey, T.: Quantal response equilibria for normal form games. Games and Econ. Behav. 10(1), 6–38 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    de Weerd, H., Verbrugge, R., Verheij, B.: Higher-order social cognition in the game of rock-paper-scissors: A simulation study. In: Bonanno, G., van Ditmarsch, H., van der Hoek, W. (eds.) LOFT, pp. 218–232 (2012)Google Scholar
  25. 25.
    de Weerd, H., Verheij, B.: The advantage of higher-order theory of mind in the game of limited bidding. In: van Eijck, J., Verbrugge, R. (eds.) ROAM. CEUR Workshop Proceedings, pp. 149–164 (2011)Google Scholar
  26. 26.
    Raiffa, H., Richardson, J., Metcalfe, D.: Negotiation Analysis: The Science and Art of Collaborative Decision Making. Belknap Press (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Harmen de Weerd
    • 1
    Email author
  • Rineke Verbrugge
    • 1
  • Bart Verheij
    • 1
  1. 1.Institute of Artificial IntelligenceUniversity of GroningenGroningenNetherlands

Personalised recommendations