802.11 Buffers: When Bigger Is Not Better?

  • David Malone
  • Hanghang Qi
  • Dmitri Botvich
  • Paul Patras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8072)

Abstract

While there have been considerable advances in the modelling of 802.11’s MAC layer in recent years, 802.11 with finite buffer space is considered difficult to analyse. In this paper, we study the impact of finite buffers’ effect on the 802.11 performance, in view of the requirements of interactive applications sensitive to delay and packet loss. Using both state-of-the art and simplified queueing models, we identify a surprising result. Specifically, we find that increased buffering throughout an 802.11 network will not only incur delay, but may actually increase the packet loss experienced by stations. By means of numerical analysis and simulations we show that this non-monotonic behaviour arises because of the contention-based nature of the medium access protocol, whose performance is closely related to the traffic load and the buffer size. Finally, we discuss on protocol and buffer tuning towards eliminating such undesirable effect.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asmussen, S.: Applied Probability and Queues, 2nd edn. Springer (2003)Google Scholar
  2. 2.
    Bertsekas, D.P., Gallager, R.G.: Data networks, vol. 2. Prentice-Hall (1987)Google Scholar
  3. 3.
    Bianchi, G.: Performance analysis of IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications 18(3), 535–547 (2000)CrossRefGoogle Scholar
  4. 4.
    Carrig, B., Denieffe, D., Murphy, J.: Supporting first person shooter games in wireless local area networks. In: Proc. IEEE PIMRC, pp. 1–6 (September 2007)Google Scholar
  5. 5.
    Claypool, M., Claypool, K.: Latency and player actions in online games. Commun. ACM 49 (2006)Google Scholar
  6. 6.
    Duffy, K., Ganesh, A.J.: Modeling the impact of buffering on 802.11. IEEE Communications Letters 11(2) (February 2007)Google Scholar
  7. 7.
    Huang, K., Duffy, K.R., Malone, D.: On the validity of IEEE 802.11 MAC modeling hypotheses. IEEE/ACM Transactions on Networking 18(6), 1935–1948 (2010)CrossRefGoogle Scholar
  8. 8.
    Little, J., Graves, S.: Little’s law. In: Building Intuition. International Series in Operations Research & Management Science, vol. 115, pp. 81–100. Springer US (2008)Google Scholar
  9. 9.
    Liu, R.P., Sutton, G., Collings, I.B.: A new queueing model for QoS analysis of IEEE 802.11 DCF with finite buffer and load. IEEE Transactions on Wireless Communications 9(8), 2664–2675 (2010)CrossRefGoogle Scholar
  10. 10.
    Malone, D., Duffy, K., Leith, D.: Modeling the 802.11 distributed coordination function in nonsaturated heterogeneous conditions. IEEE/ACM Transactions on Networking 15(1), 159–172 (2007)CrossRefGoogle Scholar
  11. 11.
    Patras, P., Banchs, A., Serrano, P., Azcorra, A.: A Control-Theoretic Approach to Distributed Optimal Configuration of 802.11 WLANs. IEEE Transactions on Mobile Computing 10(6), 897–910 (2011)CrossRefGoogle Scholar
  12. 12.
    Zhai, H., Kwon, Y., Fang, Y.: Performance analysis of IEEE 802.11 MAC protocols in wireless LANs. Wireless Communications and Mobile Computing 4(8), 917–931 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David Malone
    • 1
  • Hanghang Qi
    • 1
  • Dmitri Botvich
    • 2
  • Paul Patras
    • 1
  1. 1.Hamilton InstituteNational University of IrelandMaynoothIreland
  2. 2.TSSGWaterford Institute of TechnologyIreland

Personalised recommendations