Dimensioning Self-sufficient Networks of Energy Harvesting Embedded Devices

  • Nicola Bui
  • Michele Rossi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8072)


Energy efficiency and self sustainability are among the primary objectives for networks of embedded devices, such as those of sensor networks and Internet of Things. In this paper we present a reference framework to obtain the optimal configuration parameters of networked devices with energy scavenging capabilities. Specifically, we derive an optimization method that links a simple and yet effective energy consumption model to network topology configurations and to the average energy that is harvested from the environment. This model is efficiently solved using interior point algorithms, making it possible to obtain optimal communication parameters and their feasibility regions, so as to ensure the perpetual operation of embedded communicating devices. Moreover, our framework allows for a dynamic system configuration as a function of the harvested energy income rate, thus making the considered networks flexible and self-adaptable.


Sensor Networks Energy Harvesting System Design Optimization Embedded Networking Communication 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonetto, R., Bui, N., Rossi, M., Zorzi, M.: McMAC: a power efficient, short preamble multi-channel medium access control protocol for wireless sensor networks. In: ICST/IEEE SIMUTools, Desenzano, Italy (March 2012)Google Scholar
  2. 2.
    Boyd, S., Kim, S.J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Springer Optimization and Engineering 8(1), 67–127 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Buettner, M., Yee, G.V., Anderson, E., Han, R.: X-MAC: a short preamble MAC protocol for duty-cycled wireless sensor networks. In: ACM SenSys. Boulder, Colorado, USA (October 2006)Google Scholar
  4. 4.
    Bui, N., Castellani, A.P., Casari, P., Rossi, M., Vangelista, L., Zorzi, M.: Book Chapter: Implementation and performance evaluation of wireless sensor networks for smart grids. Cambridge University Press (2012)Google Scholar
  5. 5.
    Dulman, S., Rossi, M., Havinga, P., Zorzi, M.: On the hop count statistics for randomly deployed wireless sensor networks. International Journal of Sensor Networks 1(1/2), 89–102 (2006)CrossRefGoogle Scholar
  6. 6.
    Ko, J., Gnawali, O., Culler, D., Terzis, A.: Evaluating the Performance of RPL and 6LoWPAN in TinyOS. In: Workshop on Extending the Internet to Low Power and Lossy Networks (IP+SN), Chicago, Illinois, USA (April 2011)Google Scholar
  7. 7.
    Leong, J., Culler, D.: A Practical Theory of Micro-Solar Power Sensor Networks. ACM Transactions on Sensor Networks 9(1) (April 2012)Google Scholar
  8. 8.
    Liu, R.S., Fan, K.W., Zheng, Z., Sinha, P.: Perpetual and Fair Data Collection for Environmental Energy Harvesting Sensor Networks. IEEE/ACM Transactions on Networking 19(4), 947–960 (2011)CrossRefGoogle Scholar
  9. 9.
    Michelusi, N., Stamatiou, K., Zorzi, M.: On optimal transmission policies for energy harvesting devices. In: Information Theory and Applications Workshop (ITA), San Diego, California, USA (February 2012)Google Scholar
  10. 10.
    Vullers, R., van Schaijk, R., Doms, I., Van Hoof, C., Mertens, R.: Micropower energy harvesting. Elsevier Solid-State Electronics 53(7), 684–693 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Nicola Bui
    • 1
    • 2
  • Michele Rossi
    • 2
    • 3
  1. 1.Patavina TechnologiesPadovaItaly
  2. 2.DEIUniversity of PadovaPadovaItaly
  3. 3.Consorzio Ferrara RicercheFerraraItaly

Personalised recommendations