Design for a Darwinian Brain: Part 1. Philosophy and Neuroscience

  • Chrisantha Fernando
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8064)


Fodor and Pylyshyn in their 1988 paper denounced the claims of the connectionists, claims that continue to percolate through neuroscience. In they proposed that a physical symbol system was necessary for open-ended cognition. What is a physical symbol system, and how can one be implemented in the brain? A way to understand them is by comparison of thought to chemistry. Both have systematicity, productivity and compositionality, elements lacking in most computational neuroscience models. To remedy this woeful situation, I examine cognitive architectures capable of open-ended cognition, and think how to implement them in a neuronal substrate. I motivate a cognitive architecture that evolves physical symbol systems in the brain. In Part 2 of this paper pair develops this architecture and proposes a possible neuronal implementation.


Reinforcement Learning Symbol System Cognitive Architecture Explicit Rule Covariance Matrix Adaptation Evolution Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ganti, T.: The Principles of Life. Oxford University Press, Oxford (2003)CrossRefGoogle Scholar
  2. 2.
    Fodor, J., Pylyshyn, Z.: Connectionism and cognitive architecture: A critical analysis. Cognition 28, 3–71 (1988)CrossRefGoogle Scholar
  3. 3.
    Penn, D., Holyoak, K., Povinelli, D.: Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences 31(2), 109–130 (2008)Google Scholar
  4. 4.
    Marcus, G.: The Algebraic Mind: Integrating Connectionism and Cognitive Science. MIT Press (2001)Google Scholar
  5. 5.
    Rougier, N., Noelle, D., Braver, T., Cohen, D., O’Reilly, R.: Prefrontal cortex and flexible cognitive control: Rules without symbols. Proc. Natl. Acad. Sci. U. S. A. 102, 7338–7343 (2005)CrossRefGoogle Scholar
  6. 6.
    Tani, J., Nolfi, S.: Learning to perceive the world as articulated: an approach for hierarchical learning in sensory-motor systems. Neural Networks 12, 1131–1141 (1999)CrossRefGoogle Scholar
  7. 7.
    Gordon, G.: Hierarchical exhaustive construction of autonomously learning networks (2011)Google Scholar
  8. 8.
    Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)CrossRefGoogle Scholar
  9. 9.
    Izhikevich, E.M.: Polychronization: computation with spikes. Neural Computation 18(2), 245–282 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Izhikevich, E.M., Hoppensteadt, F.: Polychronous wavefront computations. International Journal of Bifurcation and Chaos 19, 1733–1739 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ikegaya, Y., et al.: Synfire chains and cortical songs: Temporal modules of cortical activity. Science 304, 559–564 (2004)CrossRefGoogle Scholar
  12. 12.
    Holland, J., Reitman, J.: Cognitive systems based on adaptive algorithms. ACM SIGART Bulletin 63, 43–49 (1977)Google Scholar
  13. 13.
    Wilson, R.: Function approximation with a classifier system (2001)Google Scholar
  14. 14.
    Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10), 465–523 (1971)CrossRefGoogle Scholar
  15. 15.
    Fernando, C.: Symbol manipulation and rule learning in spiking neuronal networks. Journal of Theoretical Biology 275, 29–41 (2011)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Price, G.: Selection and covariance. Nature 227, 520–521 (1970)CrossRefGoogle Scholar
  17. 17.
    Price, G.: The nature of selection. Journal of Theoretical Biology 175(3), 389–396 (1995)CrossRefGoogle Scholar
  18. 18.
    Maynard Smith, J.: The problems of biology. Oxford University Press, Oxford (1986)Google Scholar
  19. 19.
    Stout, A., Konidaris, G., Barto, A.: Intrinsically motivated reinforcement learning: A promising framework for developmental robotics (2005)Google Scholar
  20. 20.
    Newell, A.: Unified Theories of Cognition. Harvard University Press (1990)Google Scholar
  21. 21.
    Newell, A., Simon, H.A.: Human problem solving. Prentice-Hall, Englewood Cliffs (1972)Google Scholar
  22. 22.
    Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)Google Scholar
  23. 23.
    Perkins, D.: Insight in minds and genes. In: Sternberg, R., Davidson, J. (eds.) The Nature of Insight, MIT Press, Cambridge (1995)Google Scholar
  24. 24.
    Simonton, D.: Foresight in insight? a darwinian answer. In: Sternberg, R., Davidson, J. (eds.) The Nature of Insight. MIT Press, Cambridge (1995)Google Scholar
  25. 25.
    Pigliucci, M.: Is evolvability evolvable? Nature Reviews Genetics 9, 75–82 (2008)CrossRefGoogle Scholar
  26. 26.
    Kashtan, N., Alon, U.: Spontaneous evolution of modularity and network motifs. Proc. Natl. Acad. Sci. U. S. A. 102(39), 13773–13778 (2005)CrossRefGoogle Scholar
  27. 27.
    Izquierdo, E., Fernando, C.: The evolution of evolvability in gene transcription networks (2008)Google Scholar
  28. 28.
    Parter, M., Kashtan, N., Alon, U.: Facilitated variation: How evolution learns from past environments to generalize to new environments. PLoS Computational Biology 4(11), e1000206 (2008)Google Scholar
  29. 29.
    Stulp, F., Sigaud, O.: Path integral policy improvement with covariance matrix adaptation (2012)Google Scholar
  30. 30.
    Goldberg, A.: Constructions: A Construction Grammar Approach to Argument Structure. University of Chicago Press., Chicago (1995)Google Scholar
  31. 31.
    Steels, L.: Experiments on the emergence of human communication. Trends in Cognitive Sciences 10(8), 347–349 (2006)CrossRefGoogle Scholar
  32. 32.
    Steels, L., De Beule, J.: Unify and merge in fluid construction grammar (2006)Google Scholar
  33. 33.
    Sternberg, R., Davidson, J.: The Nature of Insight. MIT Press, Cambridge (1995)Google Scholar
  34. 34.
    Szathmary, E., Fernando, C.: Concluding remarks. In: The Major Transitions Revisited, MIT Press, Cambridge (2009)Google Scholar
  35. 35.
    Andrew, A.: Machines that learn. The New Scientist, 1388–1391 (1958)Google Scholar
  36. 36.
    Uttley, A.: Conditional probability computing in a nervous system. In: Mechanisation of Thought Processes, vol. 1, pp. 121–147. H.M. Stationery Office, London (1959)Google Scholar
  37. 37.
    Butz, M., Shirinov, E., Reif, K.: Self-organizing sensorimotor maps plus internal motivations yield animal-like behavior. Adaptive Behavior 18(3-4) (2010)Google Scholar
  38. 38.
    Nessler, B., Pfeiffer, M., Maass, M.: Stdp enables spiking neurons to detect hidden causes of their inputs (2010)Google Scholar
  39. 39.
    Botvinick, M., Niv, Y., Barto, A.: Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective. Cognition 113(3), 262–280 (2009)CrossRefGoogle Scholar
  40. 40.
    Sutton, R., Precup, D., Singh, S.: Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning. Artificial Intelligence 112, 181–211 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Chrisantha Fernando
    • 1
  1. 1.Dept. of Electronic Engineering and Computer ScienceQueen Mary University of LondonUK

Personalised recommendations