Bioinspired Adaptive Control for Artificial Muscles

  • Emma D. Wilson
  • Tareq Assaf
  • Martin J. Pearson
  • Jonathan M. Rossiter
  • Sean R. Anderson
  • John Porrill
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8064)

Abstract

The new field of soft robotics offers the prospect of replacing existing hard actuator technologies by artificial muscles more suited to human-centred robotics. It is natural to apply biomimetic control strategies to the control of these actuators. In this paper a cerebellar-inspired controller is successfully applied to the real-time control of a dielectric electroactive actuator. To analyse the performance of the algorithm in detail we identified a time-varying plant model which accurately described actuator properties over the length of the experiment. Using synthetic data generated by this model we compared the performance of the cerebellar-inspired controller with that of a conventional adaptive control scheme (filtered-x LMS). Both the cerebellar and conventional algorithms were able to control displacement for short periods, however the cerebellar-inspired algorithm significantly outperformed the conventional algorithm over longer duration runs where actuator characteristics changed significantly. This work confirms the promise of biomimetic control strategies for soft-robotics applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carpi, F., Kornbluh, R., Sommer-Larsen, P., Alici, G.: Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications? Bioinspir. Biomim. 6(4), 045006 (2011)Google Scholar
  2. 2.
    Carpi, F., Raspopovic, S., Frediani, G., De Rossi, D.: Real-time control of dielectric elastomer actuators via bioelectric and biomechanical signals. Polym. Int. 59(3), 422–429 (2009)CrossRefGoogle Scholar
  3. 3.
    Van Ham, R., Sugar, T.G., Vanderborght, B., Hollander, K.W., Lefeber, D.: Review of Actuators with Passive Adjustable Compliance/Controllable Stiffness for Robotic Applications. IEEE Robot. Autom. Mag., 81–94 (2009)Google Scholar
  4. 4.
    Bar-Cohen, Y.: Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges. SPIE Press (2001)Google Scholar
  5. 5.
    Meijer, K., Rosenthal, M.S., Full, R.J.: Muscle-like actuators? A comparison between three electroactive polymers. In: Proc. SPIE, vol. 4329, pp. 7–15 (2001)Google Scholar
  6. 6.
    Xie, S., Ramson, P., Graaf, D., Calius, E., Anderson, I.: An Adaptive Control System for Dielectric Elastomers. In: 2005 IEEE International Conference on Industrial Technology, pp. 335–340 (2005)Google Scholar
  7. 7.
    Pelrine, R., Kornbluh, R.D., Pei, Q., Stanford, S., Oh, S., Eckerle, J., Full, R.J., Rosenthal, M.A., Meijer, K.: Dielectric elastomer artificial muscle actuators: toward biomimetic motion. In: Proc. SPIE, vol. 4695, pp. 126–137 (2002)Google Scholar
  8. 8.
    OHalloran, A., OMalley, F., McHugh, P.: A review on dielectric elastomer actuators, technology, applications, and challenges. J. Appl. Phys. 104(7), 071101 (2008)Google Scholar
  9. 9.
    Conn, A.T., Rossiter, J.: Towards holonomic electro-elastomer actuators with six degrees of freedom. Smart Mater. Struct. 21(3), 035012 (2012)Google Scholar
  10. 10.
    Ozsecen, M.Y., Mavroidis, C.: Nonlinear force control of dielectric electroactive polymer actuators. In: Proc. SPIE, vol. 7642(1) (2010)Google Scholar
  11. 11.
    Hao, L., Li, Z.: Modeling and adaptive inverse control of hysteresis and creep in ionic polymer metal composite actuators. Smart Mater. Struct. 19(2), 025014 (2010)Google Scholar
  12. 12.
    Dong, R., Tan, X.: Modeling and open-loop control of IPMC actuators under changing ambient temperature. Smart Mater. Struct. 21(6), 065014 (2012)Google Scholar
  13. 13.
    Brufau-Penella, J., Tsiakmakis, K., Laopoulos, T., Puig-Vidal, M.: Model reference adaptive control for an ionic polymer metal composite in underwater applications. Smart Mater. Struct. 17(4), 045020 (2008)Google Scholar
  14. 14.
    Yun, K., Kim, W.J.: Microscale position control of an electroactive polymer using an anti-windup scheme. Smart Mater. Struct. 15(4), 924–930 (2006)CrossRefGoogle Scholar
  15. 15.
    Sarban, R., Jones, R.W.: Physical model-based active vibration control using a dielectric elastomer actuator. J. Intel. Mat. Syst. Str. 23(4), 473–483 (2012)CrossRefGoogle Scholar
  16. 16.
    Widrow, B., Walach, E.: Adaptive Inverse Control A Signal Processing Approach. Reissue edn. John Wiley & Sons, Inc. (2008)Google Scholar
  17. 17.
    Dean, P., Porrill, J., Ekerot, C.F., Jörntell, H.: The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nat. Rev. Neurosci. 11(1), 30–43 (2010)CrossRefGoogle Scholar
  18. 18.
    Porrill, J., Dean, P., Anderson, S. R.: Adaptive filters and internal models: Multilevel description of cerebellar function. Neural Networks (December 28, 2012), http://dx.doi.org/10.1016/j.neunet.2012.12.005
  19. 19.
    Porrill, J., Dean, P.: Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Computation 19(1), 170–193 (2007)MATHCrossRefGoogle Scholar
  20. 20.
    Ito, M.: The Cerebellum and Neural Control New York, Raven (1984)Google Scholar
  21. 21.
    Fujita, M.: Adaptive Filter Model of the Cerebellum. Biol. Cybern. 206, 195–206 (1982)CrossRefGoogle Scholar
  22. 22.
    Lenz, A., Anderson, S.R., Pipe, A.G., Melhuish, C., Dean, P., Porrill, J.: Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles. IEEE T. Syst. Man. Cy. B 39(6), 1420–1422 (2009)CrossRefGoogle Scholar
  23. 23.
    Miller III, W.T.: Real-Time Application of Neural Networks for Sensor-Based Control of Robots with Vision. IEEE T. Syst. Man. Cyb. 19(4), 825–831 (1989)CrossRefGoogle Scholar
  24. 24.
    Spoelstra, J., Arbib, A.A., Schweighofer, N.: Cerebellar adpative control of a biomimetic manipulator. Neurocomputing 26-27, 881–889 (1999)Google Scholar
  25. 25.
    Smagt, P.: van der: Cerebellar control of robot arms. Connection Science 10, 301–320 (1998)CrossRefGoogle Scholar
  26. 26.
    Dean, P., Porrill, J., Stone, J.V.: Decorrelation control by the cerebellum achieves oculomotor plant compensation in simulated vestibulo-ocular reflex. Proc. R. Soc. B 269(1503), 1895–1904 (2002)CrossRefGoogle Scholar
  27. 27.
    Anderson, S.R., Pearson, M.J., Pipe, A.G., Prescott, T.J., Dean, P., Porrill, J.: Adaptive Cancelation of Self-Generated Sensory Signals in a Whisking Robot. IEEE T. Robot. 26(6), 1065–1076 (2010)CrossRefGoogle Scholar
  28. 28.
    Ljung, L.: System Identification - Theory for the User, 2nd edn. Prentice Hall, Upper Saddle River (1999)Google Scholar
  29. 29.
    Schweighofer, N., Doya, K., Lay, F.: Unsupervised Learning of Granule Cell Sparse Codes Enhances Cerebellar Adaptive Control. Neuroscience 103(1), 35–50 (2001)CrossRefGoogle Scholar
  30. 30.
    Coenen, O.J.D., Arnold, M.P., Sejnowski, T.J.: Parallel Fiber Coding in the Cerebellum for Life-Long Learning. Auton. Robot. 11, 291–297 (2001)MATHCrossRefGoogle Scholar
  31. 31.
    Porrill, J., Dean, P.: Recurrent cerebellar loops simplify adaptive control of redundant and nonlinear motor systems. Neural Comput. 19(1), 170–193 (2007)MATHCrossRefGoogle Scholar
  32. 32.
    Sastry, S., Bodson, M.: Adaptive Control Stability, Convergence and Robustness. Prentice Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  33. 33.
    Elliott, S.J., Nelson, P.A.: Active noise control. IEEE Signal Proc. Mag, 12–35 (1993)Google Scholar
  34. 34.
    Kelly, R.M., Strick, P.L.: Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. Journal of Neuroscience 23(23), 8432–8444 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Emma D. Wilson
    • 1
  • Tareq Assaf
    • 2
    • 3
  • Martin J. Pearson
    • 2
    • 3
  • Jonathan M. Rossiter
    • 2
    • 3
  • Sean R. Anderson
    • 1
  • John Porrill
    • 1
  1. 1.Sheffield Centre for Robotics (SCentRo)University of SheffieldUK
  2. 2.Bristol Robotics Laboratory (BRL)University of the West of EnglandUK
  3. 3.University of BristolUK

Personalised recommendations