A Biomimetic Neuronal Network-Based Controller for Guided Helicopter Flight

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8064)


As part of the Robobee project, we have modified a coaxial helicopter to operate using a discrete time map-based neuronal network for the control of heading, altitude, yaw, and odometry. Two concepts are presented: 1. A model for the integration of sensory data into the neural network. 2. A function for transferring the instantaneous spike frequency of motor neurons to a pulse width modulated signal required to drive motors and other types of actuators. The helicopter is provided with a flight vector and distance to emulate the information conveyed by the honeybee’s waggle dance. This platform allows for the testing of proposed networks for adaptive navigation in an effort to simulate honeybee foraging on a flying robot.


robotic flight honeybee neuronal control helicopter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ayers, J., Rulkov, N., Knudsen, D., Kim, Y.-B., Volkovskii, A., Selverston, A.: Controlling Underwater Robots with Electronic Nervous Systems. Appied Bionics and Biomimetics 7, 57–67 (2010)CrossRefGoogle Scholar
  2. 2.
    Ayers, J., Blustein, D., Westphal, A.: A Conserved Biomimetic Control Architecture for Walking, Swimming and Flying Robots. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds.) Living Machines 2012. LNCS, vol. 7375, pp. 1–12. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Ayers, J., Witting, J.: Biomimetic Approaches to the Control of Underwater Walking Machines. Phil. Trans. R. Soc. Lond. A 365, 273–295 (2007)CrossRefGoogle Scholar
  4. 4.
    Baader, A., Schfer, M.: The perception of the visual flow field by flying locusts: A behavioural and neuronal analysis. J. Exp. Biol. 165, 137–160 (1992)Google Scholar
  5. 5.
    Blustein, D., Rosenthal, N., Ayers, J.: Designing and implementing nervous system simulations on LEGO robots. J of Visualized Experiments (in press, 2013)Google Scholar
  6. 6.
    Blustein, D., Westphal, A., Ayers, J.: Optical flow mediates biomimetic odometry on an autonomous helicopter (in preparation, 2013)Google Scholar
  7. 7.
    Boles, L.C., Lohmann, K.J.: True navigation and magnetic maps in spiny lobsters. Nature 421(6918), 60–63 (2003)CrossRefGoogle Scholar
  8. 8.
    Chahl, J., Rosser, K., Mizutani, A.: Bioinspired optical sensors for unmanned aerial systems. In: Proceedings of SPIE: Bioinspiration, Biomimetics, and Bioreplication, vol. 7975, pp. 0301–0311 (2011)Google Scholar
  9. 9.
    Conroy, J., Gremillion, G., Ranganathan, B., Humbert, J.S.: Implementation of wide-field integration of optic flow for autonomous quadrotor navigation. Auton. Robot. 27(3), 189–198 (2009)CrossRefGoogle Scholar
  10. 10.
    Dantu, K., Kate, B., Waterman, J., Bailis, P., Welsh, M.: Programming micro-aerial vehicle swarms with karma. In: Proceedings of the 9th ACM Conference on Embedded Networked Sensor Systems. ACM (2011)Google Scholar
  11. 11.
    Dickinson, M.H., Tu, M.S.: The function of dipteran flight muscle. Comparative Biochemistry and Physiology Part A: Physiology 116(3), 223–238 (1997)CrossRefGoogle Scholar
  12. 12.
    Duhamel, P.-E.J., Perez-Arancibia, N.O., Barrows, G.L., Wood, R.J.: Biologically Inspired Optical-Flow Sensing for Altitude Control of Flapping-Wing Microrobots. IEEE/ASME Trans Mechatron 18(2), 556–568 (2013)CrossRefGoogle Scholar
  13. 13.
    Dyer, F.C.: The biology of the dance language. Annual Review of Entomology 47(1), 917–949 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Dyer, F.C., Dickinson, J.A.: Sun-compass learning in insects: Representation in a simple mind. Current Directions in Psychological Science 5(3), 67–72 (1996)CrossRefGoogle Scholar
  15. 15.
    Finio, B.M., Wood, R.J.: Open-loop roll, pitch and yaw torques for a robotic bee. In: IEEE/RSJ International Conf. on Intelligent Robots and Systems, IROS (2012)Google Scholar
  16. 16.
    Fraser, P.J.: Statocysts in Crabs: Short-Term Control of Locomotion and Long-Term Monitoring of Hydrostatic Pressure. Biol. Bull. 200(2), 155–159 (2001)CrossRefGoogle Scholar
  17. 17.
    Ibbotson, M.: Wide-field motion-sensitive neurons tuned to horizontal movement in the honeybee, Apis mellifera. J. Comp. Physiol. A: Neuroethology, Sensory, Neural, and Behavioral Physiology 168(1), 91–102 (1991)CrossRefGoogle Scholar
  18. 18.
    Joesch, M., Weber, F., Eichner, H., Borst, A.: Functional Specialization of Parallel Motion Detection Circuits in the Fly. J.Neuroscience 33(3), 902–905 (2013)CrossRefGoogle Scholar
  19. 19.
    Kate, B., Waterman, J., Dantu, K., Welsh, M.: Simbeeotic: A simulator and testbed for micro-aerial vehicle swarm experiments. In: Proceedings of the 11th International Conference on Information Processing in Sensor Networks. ACM (2012)Google Scholar
  20. 20.
    Kennedy, D., Davis, W.J.: Organization of Invertebrate Motor Systems. Handbook of Physiology. The organization of invertebrate motor systems. In: Geiger, S.R., Kandel, E.R., Brookhart, J.M., Mountcastle, V.B. (eds.) Handbook of Physiology, sec. I, vol. I, part 2., pp. 1023–1087. Amer. Physiol. Soc, Bethesda (1977)Google Scholar
  21. 21.
    Kiehn, O.: Development and functional organization of spinal locomotor circuits. Current Opinion in Neurobiology 21(1), 100–109 (2011)CrossRefGoogle Scholar
  22. 22.
    Lobo, J., Ferreira, J.F., Dias, J.: Bioinspired visuo-vestibular artificial perception system for independent motion segmentation. In: Second International Cognitive Vision Workshop, ECCV 9th European Conference on Computer Vision, Graz, Austria (2006)Google Scholar
  23. 23.
    Lu, J., Yang, J., Kim, Y.B., Ayers, J.: Low Power, High PVT Variation Tolerant Central Pattern Generator Design for a Bio-hybrid Micro Robot. In: IEEE International Midwest Symposium on Circuits and Systems, vol. 55, pp. 782–785 (2012)Google Scholar
  24. 24.
    Ma, K.Y., Chirarattananon, P., Fuller, S.B., Wood, R.J.: Controlled Flight of a Biologically Inspired. Insect-Scale Robot. Science 340(6132), 603–607 (2013)Google Scholar
  25. 25.
    Paulk, A., Millard, S.S., van Swinderen, B.: Vision in Drosophila: Seeing the World Through a Model’s Eyes. Annual Review of Entomology 58, 313–332 (2013)CrossRefGoogle Scholar
  26. 26.
    Pearson, K.G.: Common principles of motor control in vertebrates and invertebrates. Annu.Rev.Neurosci. 16, 265–297 (1993)CrossRefGoogle Scholar
  27. 27.
    Peirce, J.: PsychoPy - Psychophysics software in Python. J. Neurosci. Methods 162, 8–13 (2007)CrossRefGoogle Scholar
  28. 28.
    Prescott, T.J., Lepora, N.F., Mura, A., Verschure, P.F.M.J. (eds.): Living Machines 2012. LNCS, vol. 7375. Springer, Heidelberg (2012)Google Scholar
  29. 29.
    Rabinovich, M.I., Selverston, A., Abarbanel, H.D.I.: Dynamical principles in neuroscience. Reviews of Modern Physics 78(4), 1213–1265 (2006)CrossRefGoogle Scholar
  30. 30.
    Rulkov, N.F.: Modeling of spiking-bursting neural behavior using two-dimensional map. Phys.Rev. E 65, 041922 (2002)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Rutkowski, A.J., Miller, M.M., Quinn, R.D., Willis, M.A.: Egomotion estimation with optic flow and air velocity sensors. Biol. Cybern. 104(6), 351–367 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Sarpeshkar, R.: Analog versus digital: extrapolating from electronics to neurobiology. Neural Computation 10(7), 1601–1638 (1998)CrossRefGoogle Scholar
  33. 33.
    Srinivasan, M.V.: Honey bees as a model for vision, perception, and cognition. Annual Review of Entomology 55, 267–284 (2010)CrossRefGoogle Scholar
  34. 34.
    Srinivasan, M.V.: Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiol Reviews 91(2), 413–460 (2011)CrossRefGoogle Scholar
  35. 35.
    Srinivasan, M.V.: Visual control of navigation in insects and its relevance for robotics. Current Opinion in Neurobiology 21(4), 535–543 (2011)CrossRefGoogle Scholar
  36. 36.
    Srinivasan, M., Zhang, S., Lehrer, M., Collett, T.: Honeybee navigation en route to the goal: visual flight control and odometry. J. Exp. Biol. 199, 237–244 (1996)Google Scholar
  37. 37.
    Stein, P.S.G., Grillner, S., Selverston, A.I., Stuart, D.: Neurons, Networks and Motor Behavior. MIT Press, Cambridge (1997)Google Scholar
  38. 38.
    Teoh, Z.E., Fuller, S.B., Chirarattananon, P.: A hovering flapping-wing microrobot with altitude control and passive upright stability. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3209–3216 (2012)Google Scholar
  39. 39.
    Webb, B.: Can robots make good models of biological behaviour? Behav. Brain Sci. 24(6), 1033–1050 (2001)Google Scholar
  40. 40.
    Webb, B.: Robots in invertebrate neuroscience. Nature 417(6886), 359–363 (2002)CrossRefGoogle Scholar
  41. 41.
    Webb, B., Reeve, R.: Reafferent or redundant: integration of phonotaxis and optomotor behavior in crickets and robots. Adaptive Behavior 11(3), 137–158 (2003)CrossRefGoogle Scholar
  42. 42.
    Westphal, A., Ayers, J.: A neuronal compass for autonomous biomimetic robots (in preparation, 2013)Google Scholar
  43. 43.
    Westphal, A., Rulkov, N., Ayers, J., Brady, D., Hunt, M.: Controlling a lamprey-based robot with an electronic nervous system. Smart Struct. Sys. 8(1), 37–54 (2011)Google Scholar
  44. 44.
    Wiersma, C.A., Yamaguchi, T.: Integration of visual stimuli by the crayfish central nervous system. J. Exp. Biol. 47(3), 409–431 (1967)Google Scholar
  45. 45.
    Wood, R.J., Avadhanula, S., Steltz, E., Seeman, M., Entwistle, J., Bachrach, A., Barrows, G., Sanders, S.: An autonomous palm-sized gliding micro air vehicle. IEEE Robotics and Automation Magazine 14(2), 82–91 (2007)CrossRefGoogle Scholar
  46. 46.
    Yorozu, S., Wong, A., Fischer, B., Dankert, H., Kernan, M., Kamikouchi, A., Ito, K., Anderson, D.: Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature 458, 201–205 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Depts. of Marine and Environmental Sciences, Biology, and Marine Science CenterNortheastern UniversityNahantUSA

Personalised recommendations