Advertisement

Generic Bio-inspired Chip Model-Based on Spatio-temporal Histogram Computation: Application to Car Driving by Gaze-Like Control

  • Patrick Pirim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8064)

Abstract

A neuromorphic generic chip has been developed for human-like perception, from 1986 onwards. Similarly to the brain, the chip intertwines three aspects of visual perception, respectively related to color vision, to movement detection and to border identification. These so-called Global, Dynamic and Structural perceptions are processed on-line by a family of spatio-temporal histogram computations. The interconnected histograms mimic the brain’s ”What and Where” mode of visual processing. The chip’s capabilities are demonstrated here with an automatic car driving simulation that mimics the human gaze control on the steering wheel.

Keywords

generic chip spatio-temporal histogram model-based processing bio-inspired neuromimetic perception vision gaze control car driving GVPP BIPS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caluwaerts, K., Staffa, M., N’Guyen, S., Grand, C., Dollé, L., Favre-Félix, A., Girard, B., Khamassi, M.: A biologically inspired meta-control navigation system for the Psikharpax rat robot. Bioinspir. Biomim. 7(2), 025009 (2009)Google Scholar
  2. 2.
    Fournier, J., Monier, C., Pananceau, M., Frégnac, Y.: Adaptation of the simple or complex nature of V1 receptive fields to visual statistics. Nat. Neurosci. 14, 1053–1060 (2011)CrossRefGoogle Scholar
  3. 3.
    Frégnac, Y., Pananceau, M., René, A., Huguet, N., Marre, O., Levy, M., Shulz, D.E.: A re-examination of Hebbian-covariance rules and spike timing-dependent plasticity in cat visual cortex in vivo. Front. Synaptic Neurosci. 2, 147 (2010)CrossRefGoogle Scholar
  4. 4.
    Georgopoulos, A.P., Schwartz, A.B., Kettner, R.E.: Neuronal population coding of movement direction. Science 233, 1416–1419 (1986)CrossRefGoogle Scholar
  5. 5.
    Guigon, E., Burnod, Y.: Modelling the acquisition of goal-directed behaviors by populations of neurons. Int. J. Psychophysiol. 19, 103–113 (1995)CrossRefGoogle Scholar
  6. 6.
    Kandel, E.R., Schwartz, J.H., Jessel, T.M. (eds.): Principles of Neural Science, 3rd edn. Elsevier, New York (1991)Google Scholar
  7. 7.
    Land, M.F., Lee, D.N.: Where we look when we steer. Nature 369, 742–744 (1994)CrossRefGoogle Scholar
  8. 8.
    Liu, S.C., Delbrück, T.: Neuromorphic sensory systems. Curr. Op. Neurobiol. 20, 288–295 (2010)CrossRefGoogle Scholar
  9. 9.
    Liu, S.C., Kramer, J., Indiveri, G., Delbrück, T., Burg, T., Douglas, R.: Orientation-selective a VLSI spiking neurons. Neural Netw. 14, 629–643 (2001)CrossRefGoogle Scholar
  10. 10.
    Rousselet, G.A., Fabre-Thorpe, M., Thorpe, S.J.: Parallel processing in high-level categorization of natural images. Nat. Neurosci. 5, 629–630 (2002)Google Scholar
  11. 11.
    Sincich, L.C., Horton, J.C.: The circuitry of V1 and V2: integration of color, form, and motion. Annu. Rev. Neurosci. 28, 303–326 (2005)CrossRefGoogle Scholar
  12. 12.
    Yger, P., El Boustani, S., Destexhe, A., Frégnac, Y.: Topologically invariant macroscopic statistics in balanced networks of conductance-based integrate-and-fire neurons. J. Comput. Neurosci. 31, 229–245 (2011)CrossRefGoogle Scholar
  13. 13.
    Zeki, S.: The representation of colours in the cerebral cortex. Nature 284(5755), 412–418 (1980)CrossRefGoogle Scholar
  14. 14.
    Patent FR2611063: Method and device for real-time processing of a sequenced data flow, and application to the processing and digital video signal representing a video image (1987)Google Scholar
  15. 15.
    Patent FR2751772: Method and device for real-time detection, localisation and determination of the speed and direction of movement of an area of relative movement in a scene (1996)Google Scholar
  16. 16.
    Patent WO2005010820: Automated method and device for perception associated with determination and characterisation of borders and boundaries of an object of a space, contouring and applications (2003)Google Scholar
  17. 17.
    Patent FR2884625 (A1): Vehicle e.g. aerial vehicle, guiding method for e.g. highway, involves determining space between effective and virtual positions, and determining control signal from space, where signal directs vehicle for maintaining it in traffic lane (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Patrick Pirim
    • 1
  1. 1.Brain Vision SystemsParisFrance

Personalised recommendations