Bacteria-Inspired Magnetic Polymer Composite Microrobots

  • Kathrin E. Peyer
  • Erdem C. Siringil
  • Li Zhang
  • Marcel Suter
  • Bradley J. Nelson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8064)


Remote-controlled swimming microrobots are promising tools for future biomedical applications. Magnetically actuated helical microrobots that mimic the propulsion mechanism of E. coli bacteria are one example, and presented here is a novel method to fabricate such microrobots. They consist of a polymer-nanoparticle composite, which is patterned using a direct laser writing tool. The iron-oxide nanoparticles respond to the externally applied low-strength rotating magnetic field, which is used for the actuation of the microrobots. It is shown that a helical filament can be rotated around its axis without the addition of a body part and without structuring the magnetization direction of the composite. The influence of the helicity angle on the swim behavior of the microrobots is examined and experimental results show that a small helicity angle of 20 degrees is preferred for weakly magnetized microstructures.


Bio-inspired microrobots swimming microrobots magnetic actuation magnetic polymer composite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nelson, B.J., Kaliakatsos, I.K., Abbott, J.J.: Microrobots for Minimally Invasive Medicine. Ann. Rev. Biomed. Eng. 28, 55–85 (2010)CrossRefGoogle Scholar
  2. 2.
    Zhang, L., Peyer, K.E., Nelson, B.J.: Artificial Bacterial Flagella for Micromanipulation. Lab Chip 10, 2203–2215 (2010)CrossRefGoogle Scholar
  3. 3.
    Peyer, K.E., Zhang, L., Nelson, B.J.: Bio-Inspired Magnetic Swimming Microrobots for Biomedical Applications. Nanoscale 5, 1259–1272 (2013)CrossRefGoogle Scholar
  4. 4.
    Sanchez, S., Solovev, A.A., Schulze, S., Schmidt, O.G.: Controlled Manipulation of Multiple Cells Using Catalytic Microbots. Chem. Commun. 47, 698–700 (2011)CrossRefGoogle Scholar
  5. 5.
    Bell, D.J., Leutenegger, S., Hammer, K.M., Dong, L.X., Nelson, B.J.: Flagella-like Propulsion for Microrobots Using a Magnetic Nanocoil and Rotating Electromagnetic Field. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 1128–1133 (2007)Google Scholar
  6. 6.
    Ghosh, A., Fischer, P.: Controlled Propulsion of Artificial Magnetic Nanostructured Propellers. Nano Lett. 9, 2243–2245 (2009)CrossRefGoogle Scholar
  7. 7.
    Tottori, S., Zhang, L., Qiu, F., Krawczyk, K., Franco-Obregón, A., Nelson, B.J.: Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport. Adv. Mater. 24, 811–816 (2012)CrossRefGoogle Scholar
  8. 8.
    Suter, M., Ergeneman, O., Zürcher, J., Moitzi, C., Pané, S., Rudin, T., Pratsinis, S.E., Nelson, B.J., Hierold, C.: A Photocurable Superparamagnetic Nanocomposite: Material Characterization and Fabrication of Microstructures. Sens. Act. 156, 433–443 (2011)CrossRefGoogle Scholar
  9. 9.
    Suter M., Zhang, L., Siringil, E. C., Peters, C., Luehmann, T., Ergeneman, O., Peyer, K. E., Nelson, B. J., Hierold, C.: Superparamagnetic Microrobots: Fabrication by Two-Photon Polymerization and Biocompatibility (submitted for publication)Google Scholar
  10. 10.
    Berg, H.C., Anderson, R.A.: Bacteria Swim by Rotating Their Flagellar Filaments. Nature 245, 380–382 (1973)CrossRefGoogle Scholar
  11. 11.
    Taylor, G.: Analysis of the Swimming of Microscopic Organisms. Proc. Nat. Acad. Sci. 209, 447–461 (1951)MATHGoogle Scholar
  12. 12.
    Lighthill, J.: Flagellar Hydrodynamics. SIAM Rev. 18, 161–230 (1976)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Mahoney, A.W., Sarrazin, J.C., Bamberg, E., Abbott, J.J.: Velocity Control with Gravity Compensation for Magnetic Helical Microswimmers. Adv. Robot. 25, 1007–1028 (2011)CrossRefGoogle Scholar
  14. 14.
    Abbott, J.J., Peyer, K.E., Lagomarsino, M.C., Zhang, L., Dong, L., Kaliakatsos, I.K., Nelson, B.J.: How Should Microrobots Swim? Int. J. Robot. Res. 28, 1434–1447 (2009)CrossRefGoogle Scholar
  15. 15.
    Peyer, K.E., Zhang, L., Kratochvil, B.E., Nelson, B.J.: Non-ideal Swimming of Artificial Bacterial Flagella Near a Surface. In: Proc. IEEE Int. Conf. Robotics and Automation, pp. 96–101 (2010)Google Scholar
  16. 16.
    Peters, C., Ergeneman, O., Nelson, B.J., Hierold, C.: Superparamagnetic Swimming Microrobots with Adjusted Magnetic Anisotropy. In: Proc. IEEE Int. Conf. Micro Electro Mechanical Systems, pp. 564–567 (2013)Google Scholar
  17. 17.
    Peyer, K.E., Mahoney, A.W., Zhang, L., Abbott, J.J., Nelson, B.J.: Bacteria-Inspired Microrobots. In: Kim, M., Steager, E., Julius, A. (eds.) Microbiorobotics, pp. 165–199. Elsevier (2012)Google Scholar
  18. 18.
    Cortez, R., Fauci, L., Medovikov, A.: The Method of Regularized Stokeslets in Three Dimensions: Analysis, Validation, and Application to Helical Swimming. Phys. Fluid. 17, 031504 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kathrin E. Peyer
    • 1
  • Erdem C. Siringil
    • 1
  • Li Zhang
    • 2
  • Marcel Suter
    • 3
  • Bradley J. Nelson
    • 1
  1. 1.Institute of Robotics and Intelligent SystemsETH ZurichSwitzerland
  2. 2.Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong Kong
  3. 3.Micro and NanosystemsETH ZurichSwitzerland

Personalised recommendations