The TAMARIN Prover for the Symbolic Analysis of Security Protocols

  • Simon Meier
  • Benedikt Schmidt
  • Cas Cremers
  • David Basin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8044)


The Tamarin prover supports the automated, unbounded, symbolic analysis of security protocols. It features expressive languages for specifying protocols, adversary models, and properties, and support for efficient deduction and equational reasoning. We provide an overview of the tool and its applications.


Equational Theory Security Protocol Message Authentication Code Bilinear Pairing Adversary Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cremers, C.J.F.: The Scyther Tool: Verification, falsification, and analysis of security protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 1–16. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated analysis of Diffie-Hellman protocols and advanced security properties. In: Proc. CSF. IEEE (2012)Google Scholar
  4. 4.
    Meier, S.: Advancing Automated Security Protocol Verification. PhD thesis (2013)Google Scholar
  5. 5.
    Schmidt, B.: Formal Analysis of Key Exchange Protocols and Physical Protocols. PhD thesis (2012)Google Scholar
  6. 6.
    Comon-Lundh, H., Delaune, S.: The finite variant property: How to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
  8. 8.
    Arapinis, M., Ritter, E., Ryan, M.: Statverif: Verification of stateful processes. In: Proc. CSF. IEEE (2011)Google Scholar
  9. 9.
    Mödersheim, S.: Abstraction by set-membership: verifying security protocols and web services with databases. In: Proc. CCS, pp. 351–360. ACM (2010)Google Scholar
  10. 10.
    Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal analysis of protocols based on TPM state registers. In: Proc. CSF, pp. 66–80. IEEE (2011)Google Scholar
  11. 11.
    Künnemann, R., Steel, G.: YubiSecure? Formal security analysis results for the YubiKey and YubiHSM. In: Jøsang, A., Samarati, P., Petrocchi, M. (eds.) STM 2012. LNCS, vol. 7783, pp. 257–272. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Escobar, S., Meadows, C., Meseguer, J.: A rewriting-based inference system for the NRL protocol analyzer and its meta-logical properties. TCS 367, 162–202 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In: Proc. CSFW. IEEE (2001)Google Scholar
  14. 14.
    Küsters, R., Truderung, T.: Reducing protocol analysis with xor to the xor-free case in the Horn theory based approach. J. Autom. Reasoning 46(3-4), 325–352 (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Pankova, A., Laud, P.: Symbolic analysis of cryptographic protocols containing bilinear pairings. In: Proc. CSF. IEEE (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Simon Meier
    • 1
  • Benedikt Schmidt
    • 2
  • Cas Cremers
    • 1
  • David Basin
    • 1
  1. 1.Institute of Information SecurityETH ZurichSwitzerland
  2. 2.IMDEA Software InstituteMadridSpain

Personalised recommendations