Under-Approximating Cut Sets for Reachability in Large Scale Automata Networks

  • Loïc Paulevé
  • Geoffroy Andrieux
  • Heinz Koeppl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8044)


In the scope of discrete finite-state models of interacting components, we present a novel algorithm for identifying sets of local states of components whose activity is necessary for the reachability of a given local state. If all the local states from such a set are disabled in the model, the concerned reachability is impossible.

Those sets are referred to as cut sets and are computed from a particular abstract causality structure, so-called Graph of Local Causality, inspired from previous work and generalised here to finite automata networks. The extracted sets of local states form an under-approximation of the complete minimal cut sets of the dynamics: there may exist smaller or additional cut sets for the given reachability.

Applied to qualitative models of biological systems, such cut sets provide potential therapeutic targets that are proven to prevent molecules of interest to become active, up to the correctness of the model. Our new method makes tractable the formal analysis of very large scale networks, as illustrated by the computation of cut sets within a Boolean model of biological pathways interactions gathering more than 9000 components.


Local State Global State Boolean Network Fault Tree Boolean Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bernardinello, L., De Cindio, F.: A survey of basic net models and modular net classes. In: Rozenberg, G. (ed.) APN 1992. LNCS, vol. 609, pp. 304–351. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  2. 2.
    Bernot, G., Cassez, F., Comet, J.P., Delaplace, F., Müller, C., Roux, O.: Semantics of biological regulatory networks. Electronic Notes in Theoretical Computer Science 180(3), 3–14 (2007)CrossRefGoogle Scholar
  3. 3.
    Drabsch, Y., Ten Dijke, P.: TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 31(3-4), 553–568 (2012)CrossRefGoogle Scholar
  4. 4.
    Hädicke, O., Klamt, S.: Computing complex metabolic intervention strategies using constrained minimal cut sets. Metabolic Engineering 13(2), 204–213 (2011)CrossRefGoogle Scholar
  5. 5.
    Harel, D., Kupferman, O., Vardi, M.Y.: On the complexity of verifying concurrent transition systems. Information and Computation 173(2), 143–161 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hinkelmann, F., Laubenbacher, R.: Boolean models of bistable biological systems. Discrete and Continuous Dynamical Systems - Series S 4(6), 1443–1456 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9, 67–103 (2002)CrossRefGoogle Scholar
  8. 8.
    Jungreuthmayer, C., Zanghellini, J.: Designing optimal cell factories: integer programming couples elementary mode analysis with regulation. BMC Systems Biology 6(1), 103 (2012)CrossRefGoogle Scholar
  9. 9.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly connected nets. Journal of Theoretical Biology 22, 437–467 (1969)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Klamt, S., Gilles, E.D.: Minimal cut sets in biochemical reaction networks. Bioinformatics 20(2), 226–234 (2004)CrossRefGoogle Scholar
  11. 11.
    Klamt, S., Saez-Rodriguez, J., Gilles, E.: Structural and functional analysis of cellular networks with cellnetanalyzer. BMC Systems Biology 1(1), 2 (2007)Google Scholar
  12. 12.
    Klamt, S., Saez-Rodriguez, J., Lindquist, J., Simeoni, L., Gilles, E.: A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 7(1) 7(1), 56 (2006)CrossRefGoogle Scholar
  13. 13.
    Lee, W.S., Grosh, D.L., Tillman, F.A., Lie, C.H.: Fault tree analysis, methods, and applications - a review. IEEE Transactions on Reliability R-34, 194–203 (1985)Google Scholar
  14. 14.
    Moustakas, A., Heldin, C.H.: Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci. 98(10), 1512–1520 (2007)CrossRefGoogle Scholar
  15. 15.
    Paulevé, L., Magnin, M., Roux, O.: Refining dynamics of gene regulatory networks in a stochastic π-calculus framework. In: Priami, C., Back, R.-J., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems Biology XIII. LNCS, vol. 6575, pp. 171–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Paulevé, L., Magnin, M., Roux, O.: Static analysis of biological regulatory networks dynamics using abstract interpretation. Mathematical Structures in Computer Science 22(4), 651–685 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Richard, A.: Negative circuits and sustained oscillations in asynchronous automata networks. Advances in Applied Mathematics 44(4), 378–392 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Samaga, R., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Klamt, S.: The logic of egfr/erbb signaling: Theoretical properties and analysis of high-throughput data. PLoS Comput. Biol. 5(8), e1000438 (2009)Google Scholar
  19. 19.
    Samaga, R., Von Kamp, A., Klamt, S.: Computing combinatorial intervention strategies and failure modes in signaling networks. Journal of Computational Biology 17(1), 39–53 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Schaefer, C.F., Anthony, K., Krupa, S., Buchoff, J., Day, M., Hannay, T., Buetow, K.H.: PID: The Pathway Interaction Database. Nucleic Acids Res. 9, D674–D679 (2009)Google Scholar
  21. 21.
    Shier, D.R., Whited, D.E.: Iterative algorithms for generating minimal cutsets in directed graphs. Networks 16(2), 133–147 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Tang, Z., Dugan, J.: Minimal cut set/sequence generation for dynamic fault trees. In: Reliability and Maintainability, 2004 Annual Symposium, RAMS (2004)Google Scholar
  23. 23.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM Journal on Computing 1(2), 146–160 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Thomas, R.: Boolean formalization of genetic control circuits. Journal of Theoretical Biology 42(3), 563–585 (1973)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Loïc Paulevé
    • 1
  • Geoffroy Andrieux
    • 2
  • Heinz Koeppl
    • 1
    • 3
  1. 1.ETH ZürichSwitzerland
  2. 2.IRISA RennesFrance
  3. 3.IBM Research - ZurichRueschlikonSwitzerland

Personalised recommendations