Advertisement

Automata with Generalized Rabin Pairs for Probabilistic Model Checking and LTL Synthesis

  • Krishnendu Chatterjee
  • Andreas Gaiser
  • Jan Křetínský
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8044)

Abstract

The model-checking problem for probabilistic systems crucially relies on the translation of LTL to deterministic Rabin automata (DRW). Our recent Safraless translation [KE12, GKE12] for the LTL(F,G) fragment produces smaller automata as compared to the traditional approach. In this work, instead of DRW we consider deterministic automata with acceptance condition given as disjunction of generalized Rabin pairs (DGRW). The Safraless translation of LTL(F,G) formulas to DGRW results in smaller automata as compared to DRW. We present algorithms for probabilistic model-checking as well as game solving for DGRW conditions. Our new algorithms lead to improvement both in terms of theoretical bounds as well as practical evaluation. We compare PRISM with and without our new translation, and show that the new translation leads to significant improvements.

Keywords

Model Check Markov Decision Process Linear Temporal Logic Winning Strategy Atomic Proposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [AT04]
    Alur, R., La Torre, S.: Deterministic generators and games for LTL fragments. ACM Trans. Comput. Log. 5(1), 1–25 (2004)MathSciNetCrossRefGoogle Scholar
  2. [BK08]
    Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press (2008)Google Scholar
  3. [CH11]
    Chatterjee, K., Henzinger, M.: Faster and dynamic algorithms for maximal end-component decomposition and related graph problems in probabilistic verification. In: SODA, pp. 1318–1336 (2011)Google Scholar
  4. [Chu62]
    Church, A.: Logic, arithmetic, and automata. In: Proceedings of the International Congress of Mathematicians, pp. 23–35. Institut Mittag-Leffler (1962)Google Scholar
  5. [CY95]
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  6. [dA97]
    de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University (1997)Google Scholar
  7. [Ehl11]
    Ehlers, R.: Generalized rabin(1) synthesis with applications to robust system synthesis. In: NASA Formal Methods, pp. 101–115 (2011)Google Scholar
  8. [GKE12]
    Gaiser, A., Křetínský, J., Esparza, J.: Rabinizer: Small deterministic automata for lTL(F,G). In: Chakraborty, S., Mukund, M. (eds.) ATVA 2012. LNCS, vol. 7561, pp. 72–76. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. [JB06]
    Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD, pp. 117–124. IEEE Computer Society (2006)Google Scholar
  10. [JGWB07]
    Jobstmann, B., Galler, S., Weiglhofer, M., Bloem, R.: Anzu: A tool for property synthesis. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 258–262. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. [KB06]
    Klein, J., Baier, C.: Experiments with deterministic ω-automata for formulas of linear temporal logic. Theor. Comput. Sci. 363(2), 182–195 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. [KB07]
    Klein, J., Baier, C.: On-the-fly stuttering in the construction of deterministic ω-automata. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 51–61. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. [KE12]
    Křetínský, J., Esparza, J.: Deterministic automata for the (F,G)-fragment of LTL. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 7–22. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  14. [Kle]
    Klein, J.: ltl2dstar - LTL to deterministic Streett and Rabin automata, http://www.ltl2dstar.de/
  15. [KNP11]
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. [Kup12]
    Kupferman, O.: Recent challenges and ideas in temporal synthesis. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 88–98. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. [KV05]
    Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: FOCS, pp. 531–542. IEEE Computer Society (2005)Google Scholar
  18. [MS08]
    Morgenstern, A., Schneider, K.: From LTL to symbolically represented deterministic automata. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI 2008. LNCS, vol. 4905, pp. 279–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. [Pit06]
    Piterman, N.: From nondeterministic Buchi and Streett automata to deterministic parity automata. In: LICS, pp. 255–264 (2006)Google Scholar
  20. [Pnu77]
    Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)Google Scholar
  21. [PP06]
    Piterman, N., Pnueli, A.: Faster solutions of rabin and streett games. In: LICS, pp. 275–284 (2006)Google Scholar
  22. [PPS06]
    Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. [PR89]
    Pnueli, A., Rosner, R.: On the synthesis of an asynchronous reactive module. In: Ronchi Della Rocca, S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 652–671. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  24. [Put94]
    Puterman, M.L.: Markov Decision Processes (1994)Google Scholar
  25. [PZ86]
    Pnueli, A., Zuck, L.: Verification of multiprocess probabilistic protocols. Distributed Computing 1(1), 53–72 (1986)CrossRefzbMATHGoogle Scholar
  26. [Saf88]
    Safra, S.: On the complexity of ω-automata. In: FOCS, pp. 319–327. IEEE Computer Society (1988)Google Scholar
  27. [Var85]
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: FOCS, pp. 327–338 (1985)Google Scholar
  28. [VW86]
    Vardi, M.Y., Wolper, P.: Automata-theoretic techniques for modal logics of programs. J. Comput. Syst. Sci. 32(2), 183–221 (1986)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  • Andreas Gaiser
    • 2
  • Jan Křetínský
    • 2
    • 3
  1. 1.IST AustriaAustria
  2. 2.Fakultät für InformatikTechnische Universität MünchenGermany
  3. 3.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations