Proving Termination Starting from the End

  • Pierre Ganty
  • Samir Genaim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8044)


We present a novel technique for proving program termination which introduces a new dimension of modularity. Existing techniques use the program to incrementally construct a termination proof. While the proof keeps changing, the program remains the same. Our technique goes a step further. We show how to use the current partial proof to partition the transition relation into those behaviors known to be terminating from the current proof, and those whose status (terminating or not) is not known yet. This partition enables a new and unexplored dimension of incremental reasoning on the program side. In addition, we show that our approach naturally applies to conditional termination which searches for a precondition ensuring termination. We further report on a prototype implementation that advances the state-of-the-art on the grounds of termination and conditional termination.


Ranking Function Transition Relation Recursive Call Abstract Interpretation Termination Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    Albert, E., Arenas, P., Genaim, S., Puebla, G., Zanardini, D.: COSTA: Design and implementation of a cost and termination analyzer for java bytecode. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 113–132. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, program termination, and complexity bounds of flowchart programs. In: Cousot, R., Martel, M. (eds.) SAS 2010. LNCS, vol. 6337, pp. 117–133. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Ben-Amram, A.M.: Size-change termination, monotonicity constraints and ranking functions. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 109–123. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Ben-Amram, A.M., Genaim, S.: On the linear ranking problem for integer linear-constraint loops. In: POPL 2013: Proc. 40th ACM SIGACT-SIGPLAN Symp. on Principles of Programming Languages, pp. 51–62. ACM (2013)Google Scholar
  6. 6.
    Bozga, M., Iosif, R., Konečný, F.: Deciding conditional termination. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 252–266. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Bradley, A.R., Manna, Z., Sipma, H.B.: The polyranking principle. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1349–1361. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Chen, H.Y., Flur, S., Mukhopadhyay, S.: Termination proofs for linear simple loops. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460, pp. 422–438. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving conditional termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 328–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Cook, B., Podelski, A., Rybalchenko, A.: Abstraction refinement for termination. In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In: PLDI 2006: Proc. 27th ACM-SIGPLAN Conf. on Programming Language Design and Implementation, pp. 415–426. ACM (2006)Google Scholar
  12. 12.
    Cousot, P.: Méthodes Itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un treillis, analyse sémantique de programmes. Thèse d’état ès sciences mathématiques, Université scientifique et médicale de Grenoble (March 1978) (in French)Google Scholar
  13. 13.
    Cousot, P.: Partial completeness of abstract fixpoint checking, invited paper. In: Choueiry, B.Y., Walsh, T. (eds.) SARA 2000. LNCS (LNAI), vol. 1864, pp. 1–25. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  14. 14.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL 1977: Proc. 4th ACM SIGACT-SIGPLAN Symp. on Principles of Programming Languages, pp. 238–252. ACM (1977)Google Scholar
  15. 15.
    Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. CUP, Cambridge (1989)Google Scholar
  16. 16.
    Ganty, P.: The Fixpoint Checking Problem: An Abstraction Refinement Perspective. Ph.D. thesis, Université Libre de Bruxelles (2007)Google Scholar
  17. 17.
    Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  18. 18.
    Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination analysis with compositional transition invariants. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: POPL 2001: Proc. 28th ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages, pp. 81–92. ACM (2001)Google Scholar
  20. 20.
    Park, D.: Fixpoint induction and proofs of program properties. In: Machine Intelligence, vol. 5, pp. 59–78. American Elsevier (1969)Google Scholar
  21. 21.
    Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS 2004: Proc. 19th Annual IEEE Symp. on Logic in Computer Science, pp. 32–41. IEEE (2004)Google Scholar
  23. 23.
    Podelski, A., Rybalchenko, A., Wies, T.: Heap assumptions on demand. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 314–327. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Ramsey, F.P.: On a problem of formal logic. London Math. Society 30, 264–286 (1929)zbMATHGoogle Scholar
  25. 25.
    Rybalchenko, A.: Armc (2008),
  26. 26.
    Rybalchenko, A.: Personal communication (2012)Google Scholar
  27. 27.
    Spoto, F., Mesnard, F., Payet, É.: A termination analyzer for java bytecode based on path-length. ACM Trans. Program. Lang. Syst. 32(3) (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pierre Ganty
    • 1
  • Samir Genaim
    • 2
  1. 1.IMDEA Software InstituteMadridSpain
  2. 2.Universidad Complutense de MadridSpain

Personalised recommendations