Advertisement

Abstraction Based Model-Checking of Stability of Hybrid Systems

  • Pavithra Prabhakar
  • Miriam Garcia Soto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8044)

Abstract

In this paper, we present a novel abstraction technique and a model-checking algorithm for verifying Lyapunov and asymptotic stability of a class of hybrid systems called piecewise constant derivatives. We propose a new abstract data structure, namely, finite weighted graphs, and a modification of the predicate abstraction based on the faces in the system description. The weights on the edges trace the distance of the executions from the origin, and are computed by using linear programming. Model-checking consists of analyzing the finite weighted graph for the absence of certain kinds of cycles which can be solved by dynamic programming. We show that the abstraction is sound in that a positive result on the analysis of the graph implies that the original system is stable. Finally, we present our experiments with a prototype implementation of the abstraction and verification procedures which demonstrate the feasibility of the approach.

Keywords

Hybrid System Lyapunov Function Asymptotic Stability Weighted Graph Lyapunov Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alur, R., Dang, T., Ivančić, F.: Counter-Example Guided Predicate Abstraction of Hybrid Systems. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 208–223. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems. Acta Informatica 43(7), 451–476 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems having piecewise-constant derivatives. Theoretical Computer Science 138(1), 35–65 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Branicky, M.S.: Stability of hybrid systems. In: Unbehauen, H. (ed.) Encylopedia of Life Support Systems. Control Sytems, Robotics and Automation, volume Theme 6.43, chapter Article 6.43.28.3. UNESCO Publishing (2004)Google Scholar
  5. 5.
    Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-linear hybrid systems. In: Proceedings of the IEEE Real-Time Systems Symposium (2012)Google Scholar
  6. 6.
    Clarke, E.M., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and Counterexample-Guided Refinement in Model Checking of Hybrid Systems. International Journal on Foundations of Computer Science 14(4), 583–604 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Davrazos, G., Koussoulas, N.T.: A review of stability results for switched and hybrid systems. In: Proceedings of the Mediterranean Conference on Control (2001)Google Scholar
  8. 8.
    Dierks, H., Kupferschmid, S., Larsen, K.G.: Automatic Abstraction Refinement for Timed Automata. In: Proceedings of Formal Modeling and Analysis of Timed Systems, pp. 114–129 (2007)Google Scholar
  9. 9.
    Duggirala, P.S., Mitra, S.: Lyapunov abstractions for inevitability of hybrid systems. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 115–124 (2012)Google Scholar
  10. 10.
    Frehse, G.: PHAVer: Algorithmic verification of hybrid systems past hytech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Goebel, R., Sanfelice, R., Teel, A.: Hybrid dynamical systems. IEEE Control Systems, Control Systems Magazine 29, 28–93 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? In: Proceedings of the ACM Symposium on Theory of Computation, pp. 373–382 (1995)Google Scholar
  14. 14.
    Henzinger, T.A.: The Theory of Hybrid Automata. In: Proceedings of the IEEE Symposium on Logic in Computer Science, pp. 278–292 (1996)Google Scholar
  15. 15.
    Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River (1996)Google Scholar
  16. 16.
    Liberzon, D.: Switching in Systems and Control. Birkhuser, Boston (2003)CrossRefzbMATHGoogle Scholar
  17. 17.
    Oehlerking, J., Burchardt, H., Theel, O.: Fully automated stability verification for piecewise affine systems. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC 2007. LNCS, vol. 4416, pp. 741–745. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Parrilo, P.A.: Structure Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization. PhD thesis, California Institute of Technology, Pasadena, CA (May 2000)Google Scholar
  19. 19.
    Platzer, A., Quesel, J.-D.: KeYmaera: A hybrid theorem prover for hybrid systems (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 171–178. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Podelski, A., Wagner, S.: Model checking of hybrid systems: From reachability towards stability. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 507–521. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  21. 21.
    Prabhakar, P., Vladimerou, V., Viswanathan, M., Dullerud, G.E.: Verifying tolerant systems using polynomial approximations. In: Proceedings of the IEEE Real-Time Systems Symposium, pp. 181–190 (2009)Google Scholar
  22. 22.
    Prabhakar, P., Duggirala, P.S., Mitra, S., Viswanathan, M.: Hybrid automata-based CEGAR for rectangular hybrid systems. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 48–67. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Prabhakar, P., Dullerud, G.E., Viswanathan, M.: Pre-orders for reasoning about stability. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 197–206 (2012)Google Scholar
  24. 24.
    Prabhakar, P., Viswanathan, M.: A dynamic algorithm for approximate flow computations. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 133–143 (2010)Google Scholar
  25. 25.
    Prabhakar, P., Viswanathan, M.: On the decidability of stability of hybrid systems. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control (2013)Google Scholar
  26. 26.
    Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certificates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Puri, A., Borkar, V.S., Varaiya, P.: ε-approximation of differential inclusions. In: Proceedings of the International Conference on Hybrid Systems: Computation and Control, pp. 362–376 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pavithra Prabhakar
    • 1
  • Miriam Garcia Soto
    • 1
  1. 1.IMDEA Software InstituteSpain

Personalised recommendations