Ontology-Based Data Access with Databases: A Short Course

  • Roman Kontchakov
  • Mariano Rodríguez-Muro
  • Michael Zakharyaschev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8067)

Abstract

Ontology-based data access (OBDA) is regarded as a key ingredient of the new generation of information systems. In the OBDA paradigm, an ontology defines a high-level global schema of (already existing) data sources and provides a vocabulary for user queries. An OBDA system rewrites such queries and ontologies into the vocabulary of the data sources and then delegates the actual query evaluation to a suitable query answering system such as a relational database management system or a datalog engine. In this chapter, we mainly focus on OBDA with the ontology language OWL 2QL, one of the three profiles of the W3C standard Web Ontology Language OWL 2, and relational databases, although other possible languages will also be discussed. We consider different types of conjunctive query rewriting and their succinctness, different architectures of OBDA systems, and give an overview of the OBDA system Ontop.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley (1995)Google Scholar
  2. 2.
    Alon, N., Boppana, R.: The monotone circuit complexity of Boolean functions. Combinatorica 7(1), 1–22 (1987)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach, 1st edn. Cambridge University Press, New York (2009)CrossRefMATHGoogle Scholar
  4. 4.
    Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and relations. Journal of Artificial Intelligence Research (JAIR) 36, 1–69 (2009)MathSciNetMATHGoogle Scholar
  5. 5.
    Artale, A., Ryzhikov, V., Kontchakov, R.: DL-Lite with attributes and datatypes. In: Proc. of the 20th European Conf. on Artificial Intelligence (ECAI 2012). Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 61–66. IOS Press (2012)Google Scholar
  6. 6.
    Bienvenu, M., Ortiz, M., Šimkus, M., Xiao, G.: Tractable queries for lightweight description logics. In: Proc. of the 23 Int. Joint Conf. on Artificial Intelligence (IJCAI 2013) (2013)Google Scholar
  7. 7.
    Bienvenu, M., ten Cate, B., Lutz, C., Wolter, F.: Ontology-based data access: A study through disjunctive Datalog, CSP and MMSNP. In: Proc. of the 32nd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2013). ACM (2013)Google Scholar
  8. 8.
    Borodin, A., von zur Gathen, J., Hopcroft, J.: Fast parallel matrix and gcd computations. In: Proc. of the 23rd Annual Symposium on Foundations of Computer Science (FOCS 1982), pp. 65–71 (1982)Google Scholar
  9. 9.
    Calì, A., Gottlob, G., Lukasiewicz, T.: A general datalog-based framework for tractable query answering over ontologies. Journal of Web Semantics 14, 57–83 (2012)CrossRefGoogle Scholar
  10. 10.
    Calì, A., Gottlob, G., Pieris, A.: Towards more expressive ontology languages: The query answering problem. Artificial Intelligence 193, 87–128 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and efficient query answering in description logics: The DL-Lite family. Journal of Automated Reasoning 39(3), 385–429 (2007)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of query answering in description logics. In: Proc. of the 10th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006), pp. 260–270 (2006)Google Scholar
  13. 13.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: View-based query answering in description logics: Semantics and complexity. Journal of Computer and System Sciences 78(1), 26–46 (2012)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Chakravarthy, U.S., Fishman, D.H., Minker, J.: Semantic query optimization in expert systems and database systems. Benjamin-Cummings Publishing Co., Inc. (1986)Google Scholar
  15. 15.
    Chortaras, A., Trivela, D., Stamou, G.: Optimized query rewriting for OWL 2 QL. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 192–206. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun, X.: Scalable grounded conjunctive query evaluation over large and expressive knowledge bases. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 403–418. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Eiter, T., Ortiz, M., Šimkus, M., Tran, T.-K., Xiao, G.: Query rewriting for Horn-SHIQ plus rules. In: Proc. of the 26th AAAI Conf. on Artificial Intelligence (AAAI 2012). AAAI Press (2012)Google Scholar
  18. 18.
    Eiter, T., Ortiz, M., Šimkus, M.: Conjunctive query answering in the description logic SH using knots. Journal of Computer and System Sciences 78(1), 47–85 (2012)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Elmasri, R., Navathe, S.: Fundamentals of Database Systems, 6th edn. Addison-Wesley (2010)Google Scholar
  20. 20.
    Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)MATHGoogle Scholar
  21. 21.
    Glimm, B., Lutz, C., Horrocks, I., Sattler, U.: Conjunctive query answering for the description logic SHIQ. Journal of Artificial Intelligence Research (JAIR) 31, 157–204 (2008)MathSciNetMATHGoogle Scholar
  22. 22.
    Gottlob, G., Orsi, G., Pieris, A.: Ontological queries: Rewriting and optimization. In: Proc. of the 27th Int. Conf. on Data Engineering (ICDE 2011), pp. 2–13. IEEE Computer Society (2011)Google Scholar
  23. 23.
    Gottlob, G., Schwentick, T.: Rewriting ontological queries into small nonrecursive datalog programs. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2012). AAAI Press (2012)Google Scholar
  24. 24.
    Grigni, M., Sipser, M.: Monotone separation of logarithmic space from logarithmic depth. Journal of Computer and System Sciences 50(3), 433–437 (1995)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Grohe, M., Schwentick, T., Segoufin, L.: When is the evaluation of conjunctive queries tractable? In: Proc. of the 33rd Annual ACM Symposium on Theory of Computing (STOC 2001), pp. 657–666. ACM (2001)Google Scholar
  26. 26.
    Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., Pan, Y., Mei, J., Fokoue, A., Kalyanpur, A., Kershenbaum, A., Schonberg, E., Srinivas, K., Feier, C., Hench, G., Wetzstein, B., Keller, U.: Ontology reasoning with large data repositories. In: Ontology Management, Semantic Web, Semantic Web Services, and Business Applications. Semantic Web And Beyond Computing for Human Experience, vol. 7, pp. 89–128. Springer (2008)Google Scholar
  27. 27.
    Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics by a reduction to disjunctive datalog. Journal of Automated Reasoning 39(3), 351–384 (2007)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Immerman, N.: Descriptive Complexity. Springer (1999)Google Scholar
  29. 29.
    Jukna, S.: Boolean Function Complexity — Advances and Frontiers. Algorithms and combinatorics, vol. 27. Springer (2012)Google Scholar
  30. 30.
    Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: Query rewriting over shallow ontologies. In: Proc. of the 2013 International Workshop on Description Logics (DL 2013) (2013)Google Scholar
  31. 31.
    Kikot, S., Kontchakov, R., Zakharyaschev, M.: On (In)Tractability of OBDA with OWL 2 QL. In: Proc. of the 2011 International Workshop on Description Logics (DL 2011). CEUR-WS, vol. 745 (2011)Google Scholar
  32. 32.
    Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with OWL 2 QL. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2012). AAAI Press (2012)Google Scholar
  33. 33.
    Kikot, S., Tsarkov, D., Zakharyaschev, M., Zolin, E.: Query answering via modal definability with FaCT++: First blood. In: Proc. of the 2013 International Workshop on Description Logics (DL 2013) (2013)Google Scholar
  34. 34.
    Kikot, S., Kontchakov, R., Podolskii, V., Zakharyaschev, M.: Exponential lower bounds and separation for query rewriting. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 263–274. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  35. 35.
    König, M., Leclère, M., Mugnier, M.-L., Thomazo, M.: A sound and complete backward chaining algorithm for existential rules. In: Krötzsch, M., Straccia, U. (eds.) RR 2012. LNCS, vol. 7497, pp. 122–138. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  36. 36.
    Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach to query answering in DL-Lite. In: Proc. of the 12th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2010). AAAI Press (2010)Google Scholar
  37. 37.
    Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach to ontology-based data access. In: Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2011), pp. 2656–2661. AAAI Press (2011)Google Scholar
  38. 38.
    Kozen, D.: Theory of Computation. Springer (2006)Google Scholar
  39. 39.
    Krisnadhi, A., Lutz, C.: Data complexity in the EL family of description logics. In: Proc. of the 2007 International Workshop on Description Logics (DL 2007). CEUR-WS, vol. 250, pp. 88–99 (2007)Google Scholar
  40. 40.
    Lachish, O., Raz, R.: Explicit lower bound of 4.5n − o(n) for Boolean circuits. In: Proc. of the 33rd Annual ACM Symposium on Theory of Computing (STOC 2001), pp. 399–408. ACM (2001)Google Scholar
  41. 41.
    Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 2002), pp. 233–246. ACM (2002)Google Scholar
  42. 42.
    Libkin, L.: Elements of Finite Model Theory. Springer (2004)Google Scholar
  43. 43.
    Lloyd, J.W., Shepherdson, J.C.: Partial Evaluation in Logic Programming. The Journal of Logic Programming 11(3-4), 217–242 (1991)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description logic EL using a relational database system. In: Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009), pp. 2070–2075 (2009)Google Scholar
  45. 45.
    Lutz, C.: The complexity of conjunctive query answering in expressive description logics. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 179–193. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  46. 46.
    Lutz, C., Seylan, I., Toman, D., Wolter, F.: The combined approach to OBDA: taming role hierarchies using filters. In: Proc. of the Joint Workshop on Scalable and High-Performance Semantic Web Systems (SSWS+HPCSW 2012). CEUR-WS, vol. 943, pp. 16–31 (2012)Google Scholar
  47. 47.
    Lutz, C., Wolter, F.: Non-uniform data complexity of query answering in description logics. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2012). AAAI Press (2012)Google Scholar
  48. 48.
    Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and formal systems. In: Proc. of the 12th Annual Symposium on Switching and Automata Theory (SWAT 1971), pp. 188–191 (1971)Google Scholar
  49. 49.
    Ortiz, M., Calvanese, D., Eiter, T.: Data complexity of query answering in expressive description logics via tableaux. Journal of Automated Reasoning 41(1), 61–98 (2008)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Ortiz, M., Rudolph, S., Simkus, M.: Query answering in the Horn fragments of the description logics SHOIQ and SROIQ. In: Proc. of the 20th Int. Joint Conf. on Artificial Intelligence (IJCAI 2011), pp. 1039–1044. AAAI Press (2011)Google Scholar
  51. 51.
    Papadimitriou, C.H., Yannakakis, M.: On the complexity of database queries. In: Proc. of the 16th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS 1997), pp. 12–19. ACM Press (1997)Google Scholar
  52. 52.
    Pérez-Urbina, H., Motik, B., Horrocks, I.: A comparison of query rewriting techniques for DL-Lite. In: Proc. of the 2009 International Workshop on Description Logics (DL 2007). CEUR-WS, vol. 477 (2009)Google Scholar
  53. 53.
    Pérez-Urbina, H., Rodríguez-Díaz, E., Grove, M., Konstantinidis, G., Sirin, E.: Evaluation of query rewriting approaches for OWL 2. In: Proc. of the Joint Workshop on Scalable and High-Performance Semantic Web Systems (SSWS+HPCSW 2012). CEUR-WS, vol. 943, pp. 32–44 (2012)Google Scholar
  54. 54.
    Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900, pp. 133–173. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  55. 55.
    Raz, R., McKenzie, P.: Separation of the monotone NC hierarchy. In: Proc. of the 38th Annual Symposium on Foundations of Computer Science (FOCS 1997), pp. 234–243 (1997)Google Scholar
  56. 56.
    Raz, R., Wigderson, A.: Monotone circuits for matching require linear depth. Journal of the ACM 39(3), 736–744 (1992)MathSciNetCrossRefMATHGoogle Scholar
  57. 57.
    Razborov, A.: Lower bounds for the monotone complexity of some Boolean functions. Dokl. Akad. Nauk SSSR 281(4), 798–801 (1985)MathSciNetMATHGoogle Scholar
  58. 58.
    Rodríguez-Muro, M.: Tools and Techniques for Ontology Based Data Access in Lightweight Description Logics. PhD thesis, KRDB Research Centre for Knowledge and Data, Free University of Bozen-Bolzano (2010)Google Scholar
  59. 59.
    Rodríguez-Muro, M., Calvanese, D.: Dependencies: Making ontology based data access work. In: Proc. of the 5th A. Mendelzon Int. Workshop on Foundations of Data Management (AMW 2011). CEUR-WS, vol. 749 (2011)Google Scholar
  60. 60.
    Rodríguez-Muro, M., Kontchakov, R., Zakharyaschev, M.: Ontop at work. In: Proc. of the 10th OWL: Experiences and Directions Workshop (OWLED 2013) (2013)Google Scholar
  61. 61.
    Rosati, R.: Prexto: Query rewriting under extensional constraints in DL-Lite. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 360–374. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  62. 62.
    Rosati, R., Almatelli, A.: Improving query answering over DL-Lite ontologies. In: Proc. of the 12th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2010). AAAI Press (2010)Google Scholar
  63. 63.
    Rosati, R.: On conjunctive query answering in EL. In: Proc. of the 2007 International Workshop on Description Logics (DL 2007). CEUR-WS, vol. 250 (2011)Google Scholar
  64. 64.
    Savkovic, O., Calvanese, D.: Introducing datatypes in DL-Lite. In: Proc. of the 20th European Conf. on Artificial Intelligence (ECAI 2012). Frontiers in Artificial Intelligence and Applications, vol. 242, pp. 720–725. IOS Press (2012)Google Scholar
  65. 65.
    Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell Systems Technical Journal 28, 59–98 (1949)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Roman Kontchakov
    • 1
  • Mariano Rodríguez-Muro
    • 2
  • Michael Zakharyaschev
    • 1
  1. 1.Department of Computer Science and Information SystemsBirkbeck, University of LondonU.K.
  2. 2.Faculty of Computer ScienceFree University of Bozen-BolzanoItaly

Personalised recommendations