Introduction to Linked Data and Its Lifecycle on the Web

  • Sören Auer
  • Jens Lehmann
  • Axel-Cyrille Ngonga Ngomo
  • Amrapali Zaveri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8067)

Abstract

With Linked Data, a very pragmatic approach towards achieving the vision of the Semantic Web has gained some traction in the last years. The term Linked Data refers to a set of best practices for publishing and interlinking structured data on the Web. While many standards, methods and technologies developed within by the Semantic Web community are applicable for Linked Data, there are also a number of specific characteristics of Linked Data, which have to be considered. In this article we introduce the main concepts of Linked Data. We present an overview of the Linked Data lifecycle and discuss individual approaches as well as the state-of-the-art with regard to extraction, authoring, linking, enrichment as well as quality of Linked Data. We conclude the chapter with a discussion of issues, limitations and further research and development challenges of Linked Data. This article is an updated version of a similar lecture given at Reasoning Web Summer School 2011.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Resource description framework (RDF): Concepts and abstract syntax. Technical report, W3C 2 (2004)Google Scholar
  2. 2.
    Adida, B., Birbeck, M., McCarron, S., Pemberton, S.: RDFa in XHTML: Syntax and processing – a collection of attributes and processing rules for extending XHTML to support RDF. W3C Recommendation (October 2008), http://www.w3.org/TR/rdfa-syntax/
  3. 3.
    Agichtein, E., Gravano, L.: Snowball: Extracting relations from large plain-text collections. In: ACM DL, pp. 85–94 (2000)Google Scholar
  4. 4.
    Agresti, A.: An Introduction to Categorical Data Analysis, 2nd edn. Wiley-Interscience (1997)Google Scholar
  5. 5.
    Amsler, R.: Research towards the development of a lexical knowledge base for natural language processing. SIGIR Forum 23, 1–2 (1989)CrossRefGoogle Scholar
  6. 6.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia: A nucleus for a web of open data. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Auer, S., et al.: Managing the life-cycle of linked data with the lod2 stack. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 1–16. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Auer, S., Dietzold, S., Lehmann, J., Hellmann, S., Aumueller, D.: Triplify: Light-weight linked data publication from relational databases. In: Quemada, J., León, G., Maarek, Y.S., Nejdl, W. (eds.) Proceedings of the 18th International Conference on World Wide Web, WWW 2009, Madrid, Spain, April 20-24, pp. 621–630. ACM (2009)Google Scholar
  9. 9.
    Auer, S., Dietzold, S., Riechert, T.: OntoWiki – A Tool for Social, Semantic Collaboration. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 736–749. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Auer, S., Herre, H.: A versioning and evolution framework for RDF knowledge bases. In: Virbitskaite, I., Voronkov, A. (eds.) PSI 2006. LNCS, vol. 4378, pp. 55–69. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Auer, S., Lehmann, J.: Making the web a data washing machine - creating knowledge out of interlinked data. Semantic Web Journal (2010)Google Scholar
  12. 12.
    Auer, S., Lehmann, J., Hellmann, S.: LinkedGeoData - adding a spatial dimension to the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 731–746. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Auer, S., Lehmann, J., Ngonga Ngomo, A.-C.: Introduction to linked data and its lifecycle on the web. In: Polleres, A., d’Amato, C., Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 1–75. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Aumüller, D.: Semantic Authoring and Retrieval within a Wiki (WikSAR). In: Demo Session at the Second European Semantic Web Conference, ESWC 2005 (May 2005), http://wiksar.sf.net
  15. 15.
    Baader, F., Ganter, B., Sattler, U., Sertkaya, B.: Completing description logic knowledge bases using formal concept analysis. In: IJCAI 2007. AAAI Press (2007)Google Scholar
  16. 16.
    Baader, F., Sertkaya, B., Turhan, A.-Y.: Computing the least common subsumer w.r.t. a background terminology. J. Applied Logic 5(3), 392–420 (2007)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Badea, L., Nienhuys-Cheng, S.-H.: A refinement operator for description logics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods for record linkage. In: KDD 2003 Workshop on Data Cleaning, Record Linkage, and Object Consolidation (2003)Google Scholar
  19. 19.
    Ben-David, D., Domany, T., Tarem, A.: Enterprise data classification using semantic web technologies. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 66–81. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    Berners-Lee, T.: Notation 3 (1998), http://www.w3.org/DesignIssues/Notation3.html
  21. 21.
    Berners-Lee, T., Fielding, R.T., Masinter, L.: Uniform resource identifiers (URI): Generic syntax. Internet RFC 2396 (August 1998)Google Scholar
  22. 22.
    Bhagdev, R., Chapman, S., Ciravegna, F., Lanfranchi, V., Petrelli, D.: Hybrid search: Effectively combining keywords and semantic searches. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 554–568. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  23. 23.
    Bilenko, M., Kamath, B., Mooney, R.J.: Adaptive blocking: Learning to scale up record linkage. In: ICDM 2006, pp. 87–96. IEEE (2006)Google Scholar
  24. 24.
    Bizer, C., Cyganiak, R.: Quality-driven information filtering using the wiqa policy framework. Web Semantics 7(1), 1–10 (2009)CrossRefGoogle Scholar
  25. 25.
    Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1–41 (2008)CrossRefGoogle Scholar
  26. 26.
    Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K.: Occam’s razor. In: Readings in Machine Learning, pp. 201–204. Morgan Kaufmann (1990)Google Scholar
  27. 27.
    Brickley, D., Guha, R.V.: RDF Vocabulary Description Language 1.0: RDF Schema. W3C recommendation, W3C (February 2004), http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
  28. 28.
    Brin, S.: Extracting patterns and relations from the world wide web. In: Atzeni, P., Mendelzon, A.O., Mecca, G. (eds.) WebDB 1998. LNCS, vol. 1590, pp. 172–183. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  29. 29.
    Bühmann, L., Lehmann, J.: Universal OWL axiom enrichment for large knowledge bases. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 57–71. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Cherix, D., Hellmann, S., Lehmann, J.: Improving the performance of a sparql component for semantic web applications. In: JIST (2012)Google Scholar
  31. 31.
    Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. SIGMOD Record 35(3), 34–41 (2006)CrossRefGoogle Scholar
  32. 32.
    Coates-Stephens, S.: The analysis and acquisition of proper names for the understanding of free text. Computers and the Humanities 26, 441–456 (1992), doi:10.1007/BF00136985CrossRefGoogle Scholar
  33. 33.
    Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in description logics. In: AAAI 1992, pp. 754–760 (1992)Google Scholar
  34. 34.
    Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: Theoretical and experimental results. In: KR 1994, pp. 121–133. Morgan Kaufmann (1994)Google Scholar
  35. 35.
    Curran, J.R., Clark, S.: Language independent ner using a maximum entropy tagger. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, vol. 4, pp. 164–167. Association for Computational Linguistics, Morristown (2003)CrossRefGoogle Scholar
  36. 36.
    d’Amato, C., Fanizzi, N., Esposito, F.: A note on the evaluation of inductive concept classification procedures. In: Gangemi, A., Keizer, J., Presutti, V., Stoermer, H. (eds.) SWAP 2008. CEUR Workshop Proceedings, vol. 426, CEUR-WS.org (2008)Google Scholar
  37. 37.
    Dadzie, A.-S., Rowe, M.: Approaches to visualising Linked Data. Semantic Web 2(2), 89–124 (2011)Google Scholar
  38. 38.
    Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A survey. IEEE Transactions on Knowledge and Data Engineering 19, 1–16 (2007)CrossRefGoogle Scholar
  39. 39.
    Ermilov, T., Heino, N., Tramp, S., Auer, S.: OntoWiki Mobile – Knowledge Management in your Pocket. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 185–199. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  40. 40.
    Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  41. 41.
    Etzioni, O., Cafarella, M., Downey, D., Popescu, A.-M., Shaked, T., Soderland, S., Weld, D.S., Yates, A.: Unsupervised named-entity extraction from the web: an experimental study. Artif. Intell. 165, 91–134 (2005)CrossRefGoogle Scholar
  42. 42.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)MATHGoogle Scholar
  43. 43.
    Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in description logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  44. 44.
    Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T.: Hypertext transfer protocol – http/1.1 (rfc 2616). Request For Comments (1999) http://www.ietf.org/rfc/rfc2616.txt (accessed July 7, 2006)
  45. 45.
    Finkel, J.R., Grenager, T., Manning, C.: Incorporating non-local information into information extraction systems by gibbs sampling. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics, ACL 2005, pp. 363–370. Association for Computational Linguistics, Morristown (2005)CrossRefGoogle Scholar
  46. 46.
    Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for property axioms. In: Meersman, R., et al. (eds.) OTM 2012, Part II. LNCS, vol. 7566, pp. 718–735. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  47. 47.
    Flemming, A.: Quality characteristics of linked data publishing datasources. Master’s thesis, Humboldt-Universität zu Berlin (2010)Google Scholar
  48. 48.
    Frank, E., Paynter, G.W., Witten, I.H., Gutwin, C., Nevill-Manning, C.G.: Domain-specific keyphrase extraction. In: Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, IJCAI 1999, pp. 668–673. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  49. 49.
    Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)MathSciNetMATHCrossRefGoogle Scholar
  50. 50.
    Glaser, H., Millard, I.C., Sung, W.-K., Lee, S., Kim, P., You, B.-J.: Research on linked data and co-reference resolution. Technical report, University of Southampton (2009)Google Scholar
  51. 51.
    Grishman, R., Yangarber, R.: Nyu: Description of the Proteus/Pet system as used for MUC-7 ST. In: MUC-7. Morgan Kaufmann (1998)Google Scholar
  52. 52.
    Guéret, C., Groth, P., Stadler, C., Lehmann, J.: Assessing linked data mappings using network measures. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 87–102. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  53. 53.
    Harabagiu, S., Bejan, C.A., Morarescu, P.: Shallow semantics for relation extraction. In: IJCAI, pp. 1061–1066 (2005)Google Scholar
  54. 54.
    Heath, T., Bizer, C.: Linked Data - Evolving the Web into a Global Data Space. Synthesis Lectures on the Semantic Web:Theory and Technology, vol. 1. Morgan & Claypool (2011)Google Scholar
  55. 55.
    Heino, N., Dietzold, S., Martin, M., Auer, S.: Developing semantic web applications with the ontowiki framework. In: Pellegrini, T., Auer, S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked Media. SCI, vol. 221, pp. 61–77. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  56. 56.
    Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large knowledge bases. Int. J. Semantic Web Inf. Syst. 5(2), 25–48 (2009)CrossRefGoogle Scholar
  57. 57.
    Hellmann, S., Lehmann, J., Auer, S.: Learning of owl class expressions on very large knowledge bases and its applications. In: Interoperability Semantic Services and Web Applications: Emerging Concepts (ed.) Learning of OWL Class Expressions on Very Large Knowledge Bases and its Applications, ch. 5, pp. 104–130. IGI Global (2011)Google Scholar
  58. 58.
    Hellmann, S., Lehmann, J., Auer, S.: Linked-data aware URI schemes for referencing text fragments. In: ten Teije, A., Völker, J., Handschuh, S., Stuckenschmidt, H., d’Acquin, M., Nikolov, A., Aussenac-Gilles, N., Hernandez, N. (eds.) EKAW 2012. LNCS, vol. 7603, pp. 175–184. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  59. 59.
    Hellmann, S., Lehmann, J., Unbehauen, J., Stadler, C., Lam, T.N., Strohmaier, M.: Navigation-induced knowledge engineering by example. In: Takeda, H., Qu, Y., Mizoguchi, R., Kitamura, Y. (eds.) JIST 2012. LNCS, vol. 7774, pp. 207–222. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  60. 60.
    Hillner, S., Ngonga Ngomo, A.-C.: Parallelizing limes for large-scale link discovery. In: I’Semantics (2011)Google Scholar
  61. 61.
    Hogan, A., Harth, A., Passant, A., Decker, S., Polleres, A.: Weaving the pedantic web. In: LDOW (2010)Google Scholar
  62. 62.
    Hogan, A., Umbrich, J., Harth, A., Cyganiak, R., Polleres, A., Decker, S.: An empirical survey of linked data conformance. Journal of Web Semantics (2012)Google Scholar
  63. 63.
    Horridge, M., Patel-Schneider, P.F.: Manchester syntax for OWL 1.1. In: OWLED 2008 (2008)Google Scholar
  64. 64.
    Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: Swrl: A semantic web rule language combining owl and ruleml. Technical report, W3C (May 2004)Google Scholar
  65. 65.
    HTML 5: A vocabulary and associated APIs for HTML and XHTML. W3C Working Draft (August 2009) http://www.w3.org/TR/2009/WD-html5-20090825/
  66. 66.
    Iannone, L., Palmisano, I.: An algorithm based on counterfactuals for concept learning in the semantic web. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 370–379. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  67. 67.
    Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)CrossRefGoogle Scholar
  68. 68.
    Inan, A., Kantarcioglu, M., Bertino, E., Scannapieco, M.: A hybrid approach to private record linkage. In: ICDE, pp. 496–505 (2008)Google Scholar
  69. 69.
    Isele, R., Jentzsch, A., Bizer, C.: Efficient multidimensional blocking for link discovery without losing recall. In: WebDB (2011)Google Scholar
  70. 70.
    Isele, R., Jentzsch, A., Bizer, C.: Active learning of expressive linkage rules for the web of data. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 411–418. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  71. 71.
    Jacobs, I., Walsh, N.: Architecture of the world wide web, volume one. World Wide Web Consortium, Recommendation REC-webarch-20041215 (December 2004)Google Scholar
  72. 72.
    Juran, J.: The Quality Control Handbook. McGraw-Hill, New York (1974)Google Scholar
  73. 73.
    Kifer, M., Boley, H.: Rif overview. Technical report, W3C (June 2010), http://www.w3.org/TR/2012/NOTE-rif-overview-20121211/
  74. 74.
    Kim, S.N., Kan, M.-Y.: Re-examining automatic keyphrase extraction approaches in scientific articles. In: Proceedings of the Workshop on Multiword Expressions: Identification, Interpretation, Disambiguation and Applications, MWE 2009, pp. 9–16. Association for Computational Linguistics, Stroudsburg (2009)CrossRefGoogle Scholar
  75. 75.
    Kim, S.N., Medelyan, O., Kan, M.-Y., Baldwin, T.: Semeval-2010 task 5: Automatic keyphrase extraction from scientific articles. In: Proceedings of the 5th International Workshop on Semantic Evaluation, SemEval 2010, pp. 21–26. Association for Computational Linguistics, Stroudsburg (2010)Google Scholar
  76. 76.
    Köpcke, H., Thor, A., Rahm, E.: Comparative evaluation of entity resolution approaches with fever. Proc. VLDB Endow. 2(2), 1574–1577 (2009)CrossRefGoogle Scholar
  77. 77.
    Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R.: Semantic wikipedia. Journal of Web Semantics 5, 251–261 (2007)CrossRefGoogle Scholar
  78. 78.
    Lehmann, J.: Hybrid learning of ontology classes. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 883–898. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  79. 79.
    Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine Learning Research (JMLR) 10, 2639–2642 (2009)MathSciNetMATHGoogle Scholar
  80. 80.
    Lehmann, J.: Learning OWL Class Expressions. PhD thesis, University of Leipzig. PhD in Computer Science (2010)Google Scholar
  81. 81.
    Lehmann, J.: Ontology learning. In: Proceedings of Reasoning Web Summer School (2010)Google Scholar
  82. 82.
    Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. Journal of Web Semantics 9, 71–81 (2011)CrossRefGoogle Scholar
  83. 83.
    Lehmann, J., Bizer, C., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - a crystallization point for the web of data. Journal of Web Semantics 7(3), 154–165 (2009)CrossRefGoogle Scholar
  84. 84.
    Lehmann, J., Bühmann, L.: AutoSPARQL: Let users query your knowledge base. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 63–79. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  85. 85.
    Lehmann, J., et al.: deqa: Deep web extraction for question answering. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012, Part II. LNCS, vol. 7650, pp. 131–147. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  86. 86.
    Lehmann, J., Hitzler, P.: Foundations of refinement operators for description logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  87. 87.
    Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the \(\mathcal{ALC}\) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  88. 88.
    Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Machine Learning Journal 78(1-2), 203–250 (2010)MathSciNetCrossRefGoogle Scholar
  89. 89.
    Pipino, D.K.L., Wang, R., Rybold, W.: Developing Measurement Scales for Data-Quality Dimensions, vol. 1. M.E. Sharpe, New York (2005)Google Scholar
  90. 90.
    Leuf, B., Cunningham, W.: The Wiki Way: Collaboration and Sharing on the Internet. Addison-Wesley Professional (2001)Google Scholar
  91. 91.
    Lisi, F.A.: Building rules on top of ontologies for the semantic web with inductive logic programming. Theory and Practice of Logic Programming 8(3), 271–300 (2008)MathSciNetMATHCrossRefGoogle Scholar
  92. 92.
    Lisi, F.A., Esposito, F.: Learning SHIQ+log rules for ontology evolution. In: SWAP 2008. CEUR Workshop Proceedings, vol. 426, CEUR-WS.org (2008)Google Scholar
  93. 93.
    Lohmann, S., Heim, P., Auer, S., Dietzold, S., Riechert, T.: Semantifying requirements engineering – the softwiki approach. In: Proceedings of the 4th International Conference on Semantic Technologies (I-SEMANTICS 2008), pp. 182–185. J.UCS (2008)Google Scholar
  94. 94.
    Lopez, V., Uren, V., Sabou, M.R., Motta, E.: Cross ontology query answering on the semantic web: an initial evaluation. In: K-CAP 2009, pp. 17–24. ACM, New York (2009)Google Scholar
  95. 95.
    Ma, L., Sun, X., Cao, F., Wang, C., Wang, X., Kanellos, N., Wolfson, D., Pan, Y.: Semantic enhancement for enterprise data management. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 876–892. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  96. 96.
    Martin, M., Stadler, C., Frischmuth, P., Lehmann, J.: Increasing the financial transparency of european commission project funding. Semantic Web Journal, Special Call for Linked Dataset descriptions (2013)Google Scholar
  97. 97.
    Matsuo, Y., Ishizuka, M.: Keyword Extraction From A Single Document Using Word Co-Occurrence Statistical Information. International Journal on Artificial Intelligence Tools 13(1), 157–169 (2004)CrossRefGoogle Scholar
  98. 98.
    McBride, B., Beckett, D.: Rdf/xml syntax specification. W3C Recommendation (February 2004)Google Scholar
  99. 99.
    McCusker, J., McGuinness, D.: Towards identity in linked data. In: Proceedings of OWL Experiences and Directions Seventh Annual Workshop (2010)Google Scholar
  100. 100.
    Mendes, P., Mühleisen, H., Bizer, C.: Sieve: Linked data quality assessment and fusion. In: LWDM (March 2012)Google Scholar
  101. 101.
    Moats, R.: Urn syntax. Internet RFC 2141 (May 1997)Google Scholar
  102. 102.
    Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL Benchmark – Performance Assessment with Real Queries on Real Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  103. 103.
    Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: Usage-Centric Benchmarking of RDF Triple Stores. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI 2012) (2012)Google Scholar
  104. 104.
    Morsey, M., Lehmann, J., Auer, S., Stadler, C., Hellmann, S.: DBpedia and the Live Extraction of Structured Data from Wikipedia. Program: Electronic Library and Information Systems 46, 27 (2012)CrossRefGoogle Scholar
  105. 105.
    Nadeau, D.: Semi-Supervised Named Entity Recognition: Learning to Recognize 100 Entity Types with Little Supervision. PhD thesis, University of Ottawa (2007)Google Scholar
  106. 106.
    Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Linguisticae Investigationes 30(1), 3–26 (2007)CrossRefGoogle Scholar
  107. 107.
    Nadeau, D., Turney, P., Matwin, S.: Unsupervised named-entity recognition: Generating gazetteers and resolving ambiguity, pp. 266–277 (2006)Google Scholar
  108. 108.
    Ngonga Ngomo, A.-C.: Parameter-free clustering of protein-protein interaction graphs. In: Proceedings of Symposium on Machine Learning in Systems Biology 2010 (2010)Google Scholar
  109. 109.
    Ngonga Ngomo, A.-C.: A time-efficient hybrid approach to link discovery. In: Proceedings of OM@ISWC (2011)Google Scholar
  110. 110.
    Ngonga Ngomo, A.-C.: Link discovery with guaranteed reduction ratio in affine spaces with minkowski measures. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 378–393. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  111. 111.
    Ngonga Ngomo, A.-C.: On link discovery using a hybrid approach. Journal on Data Semantics 1, 203–217 (2012)CrossRefGoogle Scholar
  112. 112.
    Ngonga Ngomo, A.-C., Auer, S.: Limes - a time-efficient approach for large-scale link discovery on the web of data. In: Proceedings of IJCAI (2011)Google Scholar
  113. 113.
    Ngonga Ngomo, A.-C., Bühmann, L., Unger, C., Lehmann, J., Gerber, D.: Sorry, i don‘t speak sparql – translating sparql queries into natural language. In: Proceedings of WWW (2013)Google Scholar
  114. 114.
    Ngonga Ngomo, A.-C., Kolb, L., Heino, N., Hartung, M., Auer, S., Rahm, E.: When to reach for the cloud: Using parallel hardware for link discovery. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 275–289. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  115. 115.
    Ngonga Ngomo, A.-C., Lehmann, J., Auer, S., Höffner, K.: Raven – active learning of link specifications. In: Proceedings of OM@ISWC (2011)Google Scholar
  116. 116.
    Ngonga Ngomo, A.-C., Lyko, K.: EAGLE: Efficient active learning of link specifications using genetic programming. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 149–163. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  117. 117.
    Ngonga Ngomo, A.-C., Lyko, K., Christen, V.: COALA – correlation-aware active learning of link specifications. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 442–456. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  118. 118.
    Ngonga Ngomo, A.-C., Schumacher, F.: Border flow – a local graph clustering algorithm for natural language processing. In: Proceedings of the 10th International Conference on Intelligent Text Processing and Computational Linguistics (CICLING 2009), pp. 547–558. Best Presentation Award (2009)Google Scholar
  119. 119.
    Nguyen, D.P.T., Matsuo, Y., Ishizuka, M.: Relation extraction from wikipedia using subtree mining. In: AAAI, pp. 1414–1420 (2007)Google Scholar
  120. 120.
    Nguyen, T., Kan, M.-Y.: Keyphrase Extraction in Scientific Publications, pp. 317–326 (2007)Google Scholar
  121. 121.
    Nienhuys-Cheng, S.-H., de Wolf, R.: Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)MATHGoogle Scholar
  122. 122.
    Oren, E.: SemperWiki: A Semantic Personal Wiki. In: Decker, S., Park, J., Quan, D., Sauermann, L. (eds.) Proc. of Semantic Desktop Workshop at the ISWC, Galway, Ireland, November 6, vol. 175 (2005)Google Scholar
  123. 123.
    Pantel, P., Pennacchiotti, M.: Espresso: Leveraging generic patterns for automatically harvesting semantic relations. In: ACL, pp. 113–120. ACL Press (2006)Google Scholar
  124. 124.
    Park, Y., Byrd, R.J., Boguraev, B.K.: Automatic glossary extraction: beyond terminology identification. In: Proceedings of the 19th International Conference on Computational Linguistics, COLING 2002, vol. 1, pp. 1–7. Association for Computational Linguistics, Stroudsburg (2002)Google Scholar
  125. 125.
    Pasca, M., Lin, D., Bigham, J., Lifchits, A., Jain, A.: Organizing and searching the world wide web of facts - step one: the one-million fact extraction challenge. In: Proceedings of the 21st National Conference on Artificial Intelligence, vol. 2, pp. 1400–1405. AAAI Press (2006)Google Scholar
  126. 126.
    Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language - Semantics and Abstract Syntax. W3c:rec, W3C (February 10, 2004), http://www.w3.org/TR/owl-semantics/
  127. 127.
    Rahm, E.: Schema Matching and Mapping. Springer, Heidelberg (2011)MATHGoogle Scholar
  128. 128.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. The VLDB Journal 10, 334–350 (2001)MATHCrossRefGoogle Scholar
  129. 129.
    Raimond, Y., Sutton, C., Sandler, M.: Automatic interlinking of music datasets on the semantic web. In: 1st Workshop about Linked Data on the Web (2008)Google Scholar
  130. 130.
    Riechert, T., Lauenroth, K., Lehmann, J., Auer, S.: Towards semantic based requirements engineering. In: Proceedings of the 7th International Conference on Knowledge Management (I-KNOW) (2007)Google Scholar
  131. 131.
    Riechert, T., Morgenstern, U., Auer, S., Tramp, S., Martin, M.: Knowledge engineering for historians on the example of the catalogus professorum lipsiensis. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 225–240. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  132. 132.
    Rieß, C., Heino, N., Tramp, S., Auer, S.: EvoPat – Pattern-Based Evolution and Refactoring of RDF Knowledge Bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 647–662. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  133. 133.
    Rudolph, S.: Exploring relational structures via FLE. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 196–212. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  134. 134.
    Rula, A., Palmonari, M., Harth, A., Stadtmüller, S., Maurino, A.: On the diversity and availability of temporal information in linked open data. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 492–507. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  135. 135.
    Sahoo, S.S., Halb, W., Hellmann, S., Idehen, K., Thibodeau Jr., T., Auer, S., Sequeda, J., Ezzat, A.: A survey of current approaches for mapping of relational databases to rdf (January 2009)Google Scholar
  136. 136.
    Sampson, G.: How fully does a machine-usable dictionary cover english text. Literary and Linguistic Computing 4(1) (1989)Google Scholar
  137. 137.
    Sauermann, L., Cyganiak, R.: Cool uris for the semantic web. W3C Interest Group Note (December 2008)Google Scholar
  138. 138.
    Schaffert, S.: Ikewiki: A semantic wiki for collaborative knowledge management. In: Proceedings of the 1st International Workshop on Semantic Technologies in Collaborative Applications (STICA) (2006)Google Scholar
  139. 139.
    Scharffe, F., Liu, Y., Zhou, C.: Rdf-ai: an architecture for rdf datasets matching, fusion and interlink. In: Proc. IJCAI 2009 IR-KR Workshop (2009)Google Scholar
  140. 140.
    Sertkaya, B.: OntocomP system description. In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Proceedings of the 22nd International Workshop on Description Logics (DL 2009), Oxford, UK, July 27-30. CEUR Workshop Proceedings, vol. 477, CEUR-WS.org (2009)Google Scholar
  141. 141.
    Settles, B.: Active Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers (2012)Google Scholar
  142. 142.
    Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. Technical report (August 01, 2008)Google Scholar
  143. 143.
    Souzis, A.: Building a Semantic Wiki. IEEE Intelligent Systems 20(5), 87–91 (2005)CrossRefGoogle Scholar
  144. 144.
    Spanos, D.-E., Stavrou, P., Mitrou, N.: Bringing relational databases into the semantic web: A survey. Semantic Web 3(2), 169–209 (2012)Google Scholar
  145. 145.
    Stadler, C., Lehmann, J., Höffner, K., Auer, S.: Linkedgeodata: A core for a web of spatial open data. Semantic Web Journal 3(4), 333–354 (2012)Google Scholar
  146. 146.
    Thielen, C.: An approach to proper name tagging for german. In: Proceedings of the EACL 1995 SIGDAT Workshop (1995)Google Scholar
  147. 147.
    Tramp, S., Frischmuth, P., Ermilov, T., Auer, S.: Weaving a Social Data Web with Semantic Pingback. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS (LNAI), vol. 6317, pp. 135–149. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  148. 148.
    Tramp, S., Heino, N., Auer, S., Frischmuth, P.: RDFauthor: Employing RDFa for collaborative Knowledge Engineering. In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS (LNAI), vol. 6317, pp. 90–104. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  149. 149.
    Turney, P.D.: Coherent keyphrase extraction via web mining. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence, pp. 434–439. Morgan Kaufmann Publishers Inc., San Francisco (2003)Google Scholar
  150. 150.
    Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.-C., Gerber, D., Cimiano, P.: Sparql template-based question answering. In: Proceedings of WWW (2012)Google Scholar
  151. 151.
    Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: OWL reasoning with webPIE: Calculating the closure of 100 billion triples. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 213–227. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  152. 152.
    Verlic, M.: Lodgrefine - lod-enabled google refine in action. In: I-SEMANTICS 2012 Posters and Demonstrations Track, pp. 31–27 (2012)Google Scholar
  153. 153.
    Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  154. 154.
    Völker, J., Rudolph, S.: Fostering web intelligence by semi-automatic OWL ontology refinement. In: Web Intelligence, pp. 454–460. IEEE (2008)Google Scholar
  155. 155.
    Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  156. 156.
    Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links on the web of data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 650–665. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  157. 157.
    Walker, D., Amsler, R.: The use of machine-readable dictionaries in sublanguage analysis. Analysing Language in Restricted Domains (1986)Google Scholar
  158. 158.
    Wang, G., Yu, Y., Zhu, H.: PORE: Positive-only relation extraction from wikipedia text. In: Aberer, K., et al. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 580–594. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  159. 159.
    Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. Journal of Management Information Systems 12(4), 5–33 (1996)CrossRefGoogle Scholar
  160. 160.
    Watanabe, H., Muggleton, S.: Can ILP be applied to large datasets? In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 249–256. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  161. 161.
    Winkler, W.: The state of record linkage and current research problems. Technical report, Statistical Research Division, U.S. Bureau of the Census (1999)Google Scholar
  162. 162.
    Winkler, W.: Overview of record linkage and current research directions. Technical report, Bureau of the Census - Research Report Series (2006)Google Scholar
  163. 163.
    Wu, H., Zubair, M., Maly, K.: Harvesting social knowledge from folksonomies. In: Proceedings of the Seventeenth Conference on Hypertext and Hypermedia, HYPERTEXT 2006, pp. 111–114. ACM, New York (2006)CrossRefGoogle Scholar
  164. 164.
    Yan, Y., Okazaki, N., Matsuo, Y., Yang, Z., Ishizuka, M.: Unsupervised relation extraction by mining wikipedia texts using information from the web. In: ACL 2009, pp. 1021–1029 (2009)Google Scholar
  165. 165.
    Zaveri, A., Lehmann, J., Auer, S., Hassan, M.M., Sherif, M.A., Martin, M.: Publishing and interlinking the global health observatory dataset. Semantic Web Journal, Special Call for Linked Dataset descriptions (2013)Google Scholar
  166. 166.
    Zaveri, A., Pietrobon, R., Auer, S., Lehmann, J., Martin, M., Ermilov, T.: Redd-observatory: Using the web of data for evaluating the research-disease disparity. In: Proc. of the IEEE/WIC/ACM International Conference on Web Intelligence (2011)Google Scholar
  167. 167.
    Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment methodologies for linked open data. Under review, http://www.semantic-web-journal.net/content/quality-assessment-methodologies-linked-open-data
  168. 168.
    Zhou, G., Su, J.: Named entity recognition using an hmm-based chunk tagger. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, ACL 2002, pp. 473–480. Association for Computational Linguistics, Morristown (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Sören Auer
    • 1
  • Jens Lehmann
    • 1
  • Axel-Cyrille Ngonga Ngomo
    • 1
  • Amrapali Zaveri
    • 1
  1. 1.AKSW, Institut für InformatikUniversität LeipzigLeipzigGermany

Personalised recommendations