Generation of Tests for Programming Challenge Tasks Using Helper-Objectives

  • Arina Buzdalova
  • Maxim Buzdalov
  • Vladimir Parfenov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8084)


Generation of performance tests for programming challenge tasks is considered. A number of evolutionary approaches are compared on two different solutions of an example problem. It is shown that using helper-objectives enhances evolutionary algorithms in the considered case. The general approach involves automated selection of such objectives.


test generation programming challenges multi-objective evolutionary algorithms multi-objectivization helper-objectives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    ACM International Collegiate Programming Contest,
  2. 2.
    Timus Online Judge. The Problem Archive with Online Judge System,
  3. 3.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)Google Scholar
  4. 4.
    Buzdalov, M.: Generation of Tests for Programming Challenge Tasks Using Evolution Algorithms. In: GECCO Conference Companion on Genetic and Evolutionary Computation, pp. 763–766. ACM, New York (2011)CrossRefGoogle Scholar
  5. 5.
    Jensen, M.T.: Helper-Objectives: Using Multi-Objective Evolutionary Algorithms for Single-Objective Optimisation. Journal of Mathematical Modelling and Algorithms 3(4), 323–347 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing Local Optima in Single-Objective Problems by Multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Buzdalova, A., Buzdalov, M.: Increasing Efficiency of Evolutionary Algorithms by Choosing between Auxiliary Fitness Functions with Reinforcement Learning. In: 11th International Conference on Machine Learning and Applications, pp. 150–155. IEEE (2012)Google Scholar
  8. 8.
    Pisinger, D.: Algorithms for Knapsack Problems. PhD Thesis, University of Copenhagen (1995)Google Scholar
  9. 9.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  10. 10.
    D’Souza, Rio G. L., Chandra Sekaran, K., Kandasamy, A.: Improved NSGA-II Based on a Novel Ranking Scheme. Computing Research Repository. ID: abs/1002.4005 (2010)Google Scholar
  11. 11.
    Strehl, A.L., Li, L., Wiewora, E., Langford, J., Littman, M.L.: PAC model-free reinforcement learning. In: 23rd International Conference on Machine Learning, pp. 881–888 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arina Buzdalova
    • 1
  • Maxim Buzdalov
    • 1
  • Vladimir Parfenov
    • 1
  1. 1.St. Petersburg National Research University, of Information Technologies, Mechanics and OpticsSaint-PetersburgRussia

Personalised recommendations