Generation of Tests for Programming Challenge Tasks Using Helper-Objectives

  • Arina Buzdalova
  • Maxim Buzdalov
  • Vladimir Parfenov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8084)

Abstract

Generation of performance tests for programming challenge tasks is considered. A number of evolutionary approaches are compared on two different solutions of an example problem. It is shown that using helper-objectives enhances evolutionary algorithms in the considered case. The general approach involves automated selection of such objectives.

Keywords

test generation programming challenges multi-objective evolutionary algorithms multi-objectivization helper-objectives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ACM International Collegiate Programming Contest, http://cm.baylor.edu/welcome.icpc
  2. 2.
    Timus Online Judge. The Problem Archive with Online Judge System, http://acm.timus.ru
  3. 3.
    Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer (2003)Google Scholar
  4. 4.
    Buzdalov, M.: Generation of Tests for Programming Challenge Tasks Using Evolution Algorithms. In: GECCO Conference Companion on Genetic and Evolutionary Computation, pp. 763–766. ACM, New York (2011)CrossRefGoogle Scholar
  5. 5.
    Jensen, M.T.: Helper-Objectives: Using Multi-Objective Evolutionary Algorithms for Single-Objective Optimisation. Journal of Mathematical Modelling and Algorithms 3(4), 323–347 (2004)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Knowles, J.D., Watson, R.A., Corne, D.W.: Reducing Local Optima in Single-Objective Problems by Multi-objectivization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 269–283. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Buzdalova, A., Buzdalov, M.: Increasing Efficiency of Evolutionary Algorithms by Choosing between Auxiliary Fitness Functions with Reinforcement Learning. In: 11th International Conference on Machine Learning and Applications, pp. 150–155. IEEE (2012)Google Scholar
  8. 8.
    Pisinger, D.: Algorithms for Knapsack Problems. PhD Thesis, University of Copenhagen (1995)Google Scholar
  9. 9.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  10. 10.
    D’Souza, Rio G. L., Chandra Sekaran, K., Kandasamy, A.: Improved NSGA-II Based on a Novel Ranking Scheme. Computing Research Repository. ID: abs/1002.4005 (2010)Google Scholar
  11. 11.
    Strehl, A.L., Li, L., Wiewora, E., Langford, J., Littman, M.L.: PAC model-free reinforcement learning. In: 23rd International Conference on Machine Learning, pp. 881–888 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Arina Buzdalova
    • 1
  • Maxim Buzdalov
    • 1
  • Vladimir Parfenov
    • 1
  1. 1.St. Petersburg National Research University, of Information Technologies, Mechanics and OpticsSaint-PetersburgRussia

Personalised recommendations