Advertisement

A Study on Multi-label Classification

  • Clifford A. Tawiah
  • Victor S. Sheng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7987)

Abstract

Multi-label classifications exist in many real world applications. This paper empirically studies the performance of a variety of multi-label classification algorithms. Some of them are developed based on problem transformation. Some of them are developed based on adaption. Our experimental results show that the adaptive Multi-Label K-Nearest Neighbor performs the best, followed by Random k-Label Set, followed by Classifier Chain and Binary Relevance. Adaboost.MH performs the worst, followed by Pruned Problem Transformation. Our experimental results also provide us the confidence of existing correlations among multi-labels. These insights shed light for future research directions on multi-label classifications.

Keywords

multi-label classification Multi-Label K-Nearest Neighbor Random k-Label Set Adaboost.MH Classifier Chain Binary Relevance Pruned Problem Transformation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining Multi-label Data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, 2nd edn. Springer (2010)Google Scholar
  2. 2.
    Klimt, B., Yang, Y.: Introducing the Enron corpus. In: First Conference on Email and Anti-Spam, CEAS (2004)Google Scholar
  3. 3.
    Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Machine Learning 85(3), 333–359 (2011)CrossRefGoogle Scholar
  4. 4.
    Tsoumakas, G., Ioannis, K.: Multi-label Classification: An Overview. International Journal of Data Warehousing and Mining (2007)Google Scholar
  5. 5.
    Min-Ling, Z., Zhou, Z.: ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition 40(7), 2038–2048 (2007)zbMATHCrossRefGoogle Scholar
  6. 6.
    Arunadevi, J., Rajamani, V.: An Evolutionary Multi Label Classification Using Associative Rule Mining. International Journal of Soft Computing 6(2), 20–25 (2011)CrossRefGoogle Scholar
  7. 7.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Random k-labelsets for multilabel classification. IEEE Transactions on Knowledge and Data Engineering 23(7), 1079–1089 (2011)CrossRefGoogle Scholar
  8. 8.
    Yu-Yin, S., Zhang, Y., Zhi-Hua, Z.: Multi-label learning with weak label. In: Twenty-Fourth AAAI Conference on Artificial Intelligence (2010)Google Scholar
  9. 9.
    Alvares, C.E., Monard, M.C., Metz, J.: Multi-label Problem Transformation Methods: A Case Study. CLEI Electronic Journal 14(1), 4 (2011)Google Scholar
  10. 10.
    Tsoumakas, G., et al.: Mulan: A java library for multi-label learning. Journal of Machine Learning Research 1, 1–48 (2010)Google Scholar
  11. 11.
    Tao, L., Zhang, C., Zhu, S.: Empirical studies on multi-label classification. In: The Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2006 (2006)Google Scholar
  12. 12.
    Huang, D.-S., McGinnity, M., Heutte, L., Zhang, X.-P. (eds.): ICIC 2010. CCIS, vol. 93. Springer, Heidelberg (2010)Google Scholar
  13. 13.
    Colin, C., Mohammad, S.M., de Bruijn, B.: Binary classifiers and latent sequence models for emotion detection in suicide notes. Biomedical Informatics Insights 5(suppl. 1), 147 (2012)Google Scholar
  14. 14.
    Jesse, R.: A pruned problem transformation method for multi-label classification. In: Proc. 2008 New Zealand Computer Science Research Student Conference, NZCSRS 2008 (2008)Google Scholar
  15. 15.
    Yoav, F., Schapire, R., Abe, N.: A short introduction to boosting. Journal-Japanese Society for Artificial Intelligence 14, 771–780 (1999): 1612Google Scholar
  16. 16.
    Min-Ling, Z., Zhang, K.: Multi-label learning by exploiting label dependency. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM (2010)Google Scholar
  17. 17.
    Schapire, R.E., Singer, Y.: Boostexter: A boosting-based system for text categorization. Machine Learning 39(2/3), 135–168 (2000)zbMATHCrossRefGoogle Scholar
  18. 18.
    Tsoumakas, G., Zhang, M.-L., Zhou, Z.-H.: Tutorial on learning from multi-label data. In: ECML/PKDD 2009, Bled, Slovenia (2009), http://www.ecmlpkdd2009.net/wp-content/uploads/2009/08/learningfrom-multi-label-data.pdf
  19. 19.
    Kumar, V., Wu, X.: Adaboost, The top ten algorithms in data mining, ch. 7, pp. 127–144. CRC Press (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Clifford A. Tawiah
    • 1
  • Victor S. Sheng
    • 1
  1. 1.Department of Computer ScienceUniversity of Central ArkansasConwayUSA

Personalised recommendations