A Comparative Study on Mobile Visual Recognition

  • Elisavet Chatzilari
  • Georgios Liaros
  • Spiros Nikolopoulos
  • Yiannis Kompatsiaris
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7988)

Abstract

In this work we perform an extensive comparative study of approaches for mobile visual recognition by simultaneously evaluating the performance and the computational cost of state-of-the-art key-point detection, feature extraction and encoding algorithms. Every step is independently tested so that its contribution to the final computational cost can be measured. The widely used OpenCV library is utilized for the implementation of the algorithms, while the evaluation is performed on the PASCAL VOC 2007 dataset, a challenging real world dataset crawled from the web. Our study identifies the algorithmic configurations that manage to optimally balance performance and computational cost, and provide a viable solution for real time mobile visual recognition.

Keywords

image classification feature extraction mobile visual recognition OpenCV 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, M., Konolige, K., Blas, M.R.: Censure: Center surround extremas for realtime feature detection and matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: Fast retina keypoint. In: IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, June 16-21 (2012)Google Scholar
  3. 3.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)CrossRefGoogle Scholar
  4. 4.
    Berg, D.: Apple says: Mobile application performance matters, October 29 (2012), http://www.apmdigest.com/apple-says-mobile-application-performance-matters
  5. 5.
    Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000)Google Scholar
  6. 6.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: Brief: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details: an evaluation of recent feature encoding methods. In: British Machine Vision Conference (2011)Google Scholar
  8. 8.
    Cortes, C., Vapnik, V.: Support-vector networks. In: Machine Learning, pp. 273–297 (1995)Google Scholar
  9. 9.
    Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)Google Scholar
  10. 10.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2007 (VOC 2007) (2007) Results, http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
  11. 11.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012, VOC 2012 (2012) Results, http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
  12. 12.
    Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: A library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)MATHGoogle Scholar
  13. 13.
    Girod, B., Chandrasekhar, V., Chen, D.M., Cheung, N.-M., Grzeszczuk, R., Reznik, Y.A., Takacs, G., Tsai, S.S., Vedantham, R.: Mobile visual search. IEEE Signal Process. Mag. 28(4), 61–76 (2011)CrossRefGoogle Scholar
  14. 14.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  15. 15.
    Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a compact image representation. In: IEEE Conference on Computer Vision & Pattern Recognition, pp. 3304–3311 (June 2010)Google Scholar
  16. 16.
    Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition, pp. 2169–2178 (2006)Google Scholar
  17. 17.
    Li, J., Wang, J.Z.: Real-time computerized annotation of pictures. IEEE Trans. Pattern Anal. Mach. Intell. 30(6), 985–1002 (2008)CrossRefGoogle Scholar
  18. 18.
    Liu, X., Hull, J.J., Graham, J., Moraleda, J., Bailloeul, T.: Mobile visual search, linking printed documents to digital media. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2010)Google Scholar
  19. 19.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision, ICCV 1999, vol. 2, pp. 1150–1157. IEEE Computer Society, Washington, DC (1999)Google Scholar
  20. 20.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  21. 21.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vision Comput. 22(10), 761–767 (2004)CrossRefGoogle Scholar
  22. 22.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  23. 23.
    Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: International Conference on Computer Vision Theory and Application, VISSAPP 2009, pp. 331–340. INSTICC Press (2009)Google Scholar
  24. 24.
    Over, P., Awad, G., Fiscus, J., Smeaton, A.F., Kraaij, W., Qunot, G.: TRECVID 2011 – An Overview of the Goals, Tasks, Data, Evaluation Mechanisms and Metrics. In: Proceedings of TRECVID 2011. NIST, USA (December 2011)Google Scholar
  25. 25.
    Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large vocabularies and fast spatial matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2007)Google Scholar
  26. 26.
    Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to sift or surf. In: International Conference on Computer Vision, Barcelona (2011)Google Scholar
  28. 28.
    Shi, J., Tomasi, C.: Good features to track. In: 1994 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 1994, pp. 593–600 (1994)Google Scholar
  29. 29.
    Takacs, G., Chandrasekhar, V., Gelfand, N., Xiong, Y., Chen, W.-C., Bismpigiannis, T., Grzeszczuk, R., Pulli, K., Girod, B.: Outdoors augmented reality on mobile phone using loxel-based visual feature organization. In: Proceedings of the 1st ACM International Conference on Multimedia Information Retrieval, pp. 427–434 (2008)Google Scholar
  30. 30.
    van de Sande, K., Gevers, T., Snoek, C.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 99(1) (2008)Google Scholar
  31. 31.
    van Gemert, J.C., Veenman, C.J., Smeulders, A.W.M., Geusebroek, J.M.: Visual word ambiguity. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(7), 1271–1283 (2010)CrossRefGoogle Scholar
  32. 32.
    Vapnik, V.N.: Statistical learning theory, 1st edn. Wiley (1998)Google Scholar
  33. 33.
    Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Schmalstieg, D.: Pose tracking from natural features on mobile phones. In: Proceedings of the 7th International Symposium on Mixed and Augmented Reality (2008)Google Scholar
  34. 34.
    Zhou, X., Yu, K., Zhang, T., Huang, T.S.: Image classification using super-vector coding of local image descriptors. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 141–154. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Elisavet Chatzilari
    • 1
    • 2
  • Georgios Liaros
    • 1
    • 3
  • Spiros Nikolopoulos
    • 1
  • Yiannis Kompatsiaris
    • 1
  1. 1.Information Technologies Institute, Centre for Research and Technology HellasThessalonikiGreece
  2. 2.Centre for VisionSpeech and Signal Processing University of Surrey GuildfordUK
  3. 3.Dept. of InformaticsIonian UniversityKerkyraGreece

Personalised recommendations