Advertisement

Optimal Bounds for Multiweighted and Parametrised Energy Games

  • Line Juhl
  • Kim Guldstrand Larsen
  • Jean-François Raskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8051)

Abstract

Multiweighted energy games are two-player multiweighted games that concern the existence of infinite runs subject to a vector of lower and upper bounds on the accumulated weights along the run. We assume an unknown upper bound and calculate the set of vectors of upper bounds that allow an infinite run to exist. For both a strict and a weak upper bound we show how to construct this set by employing results from previous works, including an algorithm given by Valk and Jantzen for finding the set of minimal elements of an upward closed set. Additionally, we consider energy games where the weight of some transitions is unknown, and show how to find the set of suitable weights using the same algorithm.

Keywords

Parametrise Transition Pareto Frontier Winning Strategy Optimal Bound Vacuum Cleaner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N.: Timed Automata with Observers under Energy Constraints. In: 13th ACM International Conference on Hybrid Systems: Computation and Control (HSCC 2010), pp. 61–70. ACM (2010)Google Scholar
  2. 2.
    Bouyer, P., Fahrenberg, U., Larsen, K.G., Markey, N., Srba, J.: Infinite Runs in Weighted Timed Automata with Energy Constraints. In: Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 33–47. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Brázdil, T., Jančar, P., Kučera, A.: Reachability Games on Extended Vector Addition Systems with States. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 478–489. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource Interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Chaloupka, J.: Z-Reachability Problem for Games on 2-Dimensional Vector Addition Systems with States Is in P. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227, pp. 104–119. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Chatterjee, K., Doyen, L.: Energy Parity Games. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part II. LNCS, vol. 6199, pp. 599–610. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Generalized Mean-payoff and Energy Games. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010). LIPIcs, vol. 8, pp. 505–516. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2010)Google Scholar
  8. 8.
    Degorre, A., Doyen, L., Gentilini, R., Raskin, J.-F., Toruńczyk, S.: Energy and Mean-Payoff Games with Imperfect Information. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 260–274. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Fahrenberg, U., Juhl, L., Larsen, K.G., Srba, J.: Energy Games in Multiweighted Automata. In: Cerone, A., Pihlajasaari, P. (eds.) ICTAC 2011. LNCS, vol. 6916, pp. 95–115. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Valk, R., Jantzen, M.: The residue of vector sets with applications to decidability problems in Petri nets. In: Rozenberg, G. (ed.) APN 1984. LNCS, vol. 188, pp. 234–258. Springer, Heidelberg (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Line Juhl
    • 1
  • Kim Guldstrand Larsen
    • 1
  • Jean-François Raskin
    • 2
  1. 1.Department of Computer ScienceAalborg UniversityDenmark
  2. 2.Université Libre de BruxellesBelgium

Personalised recommendations