Advertisement

Counterflow in Evacuations

  • Tobias Kretz
Conference paper

Abstract

It is shown in this work that the average individual egress time and other performance indicators for egress of people from a building can be improved under certain circumstances if counterflow occurs. The circumstances include widely varying walking speeds and two differently far located exits with different capacity. The result is achieved both with a paper and pencil calculation as well as with a micro simulation of an example scenario. As the difficulty of exit signage with counterflow remains one cannot conclude from the result that an emergency evacuation procedure with counterflow would really be the better variant.

References

  1. 1.
    P.M. Simon and H.A. Gutowitz. A cellular automaton model for bi-directional traffic. Phys. Rev. E, 57:2441, 1998.CrossRefGoogle Scholar
  2. 2.
    M. Muramatsu, T. Irie, and T. Nagatani. Jamming transition in pedestrian counter flow. Physica A, 267:487–498, 1999.CrossRefGoogle Scholar
  3. 3.
    V.J. Blue and J.L. Adler. Cellular Automata Microsimulation of Bi-Directional Pedestrian Flows. Transp. Res. Rec., 1678:135–141, 2000.CrossRefGoogle Scholar
  4. 4.
    S.A.H. AlGadhi, H.S. Mahmassani, and R. Herman. A Speed-Concentration Relation for Bi-Directional Crowd Movements with Strong Interaction. In Schreckenberg and Sharma [34], pages 3–20.Google Scholar
  5. 5.
    Y. Tajima, K. Takimoto, and T. Nagatani. Pattern formation and jamming transition in pedestrian counter flow. Physica A, 313:709–723, 2002.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    M. Isobe, T. Adachi, and T. Nagatani. Experiment and simulation of pedestrian counter flow. Physica A, 336:638–650, 2004.CrossRefGoogle Scholar
  7. 7.
    T. Kretz, A. Grünebohm, M. Kaufman, F. Mazur, and M. Schreckenberg. Experimental study of pedestrian counterflow in a corridor. J. Stat. Mech., P10001, 2006.Google Scholar
  8. 8.
    T. Kretz, M. Kaufman, and M. Schreckenberg. Counterflow Extension for the F.A.S.T.-Model. Lect. Notes Comp. Sc., 5191:555–558, 2008.Google Scholar
  9. 9.
    A. Schadschneider, W. Klingsch, H. Klüpfel, T. Kretz, C. Rogsch, and A. Seyfried. Evacuation Dynamics: Empirical Results, Modeling and Applications. In R.A. Meyers, editor, Encyclopedia of Complexity and System Science, page 3142. Springer, 2009.Google Scholar
  10. 10.
    A. Schadschneider, H. Klüpfel, T. Kretz, C. Rogsch, and A. Seyfried. Fundamentals of Pedestrian and Evacuation Dynamics. In A. Bazzan and F. Klügl, editors, Multi-Agent Systems for Traffic and Transportation Engineering, pages 124–154. Information Science Reference, USA, 2009.CrossRefGoogle Scholar
  11. 11.
    M.G.H. Bell and Y. Iida. Transportation network analysis. Wiley, 1997.Google Scholar
  12. 12.
    IMO. Interim Guidelines for Evacuation Analyses for New and Existing Passenger Ships. Technical Report MSC/Circ. 1238, IMO, 2007.Google Scholar
  13. 13.
    T. Kretz, S. Hengst, and P. Vortisch. Pedestrian Flow at Bottlenecks – Validation and Calibration of VISSIM’s Social Force Model of Pedestrian Traffic and its Empirical Foundations. In M. Sarvi, editor, ISTS08, 2008.Google Scholar
  14. 14.
    M. Fellendorf and P. Vortisch. Microscopic Traffc Flow Simulator VISSIM. Fundamentals of Traffic Simulation, pages 63–94, 2010.Google Scholar
  15. 15.
    PTV. VISSIM 5.30 User Manual. Karlsruhe, DE, 2010.Google Scholar
  16. 16.
    A. Johansson, D. Helbing, and P.K. Shukla. Specification of the Social Force Pedestrian Model by Evolutionary Adjustment to Video Tracking Data. Adv. Compl. Sys., 10(4):271–288, 2007.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    D. Helbing and A. Johansson. Pedestrian, Crowd and Evacuation Dynamics. In R.A. Meyers, editor, Encyclopedia of Complexity and System Science, volume 16, page 6476. Springer, 2009.Google Scholar
  18. 18.
    D.M. Kreps. Game theory and economic modelling. OUP Catalogue, 1992.Google Scholar
  19. 19.
    C. Camerer and Russell Sage Foundation. Behavioral game theory: Experiments in strategic interaction, Vol. 9. Princeton Univ. Press, 2003.Google Scholar
  20. 20.
    M.J. Osborne. An introduction to game theory, 2004.Google Scholar
  21. 21.
    T. Kretz. A Round-Robin Tournament of the Iterated Prisoner’s Dilemma with Complete Memory-Size-Three Strategies. Complex Systems, 19(4):363–389, 2011.MathSciNetMATHGoogle Scholar
  22. 22.
    T. Kretz. Pedestrian Traffic: on the Quickest Path. J. Stat. Mech., P03012, 2009.Google Scholar
  23. 23.
    E. Kirik, T. Yurgel’yan, and D. Krouglov. The shortest time and/or the shortest path strategies in a ca ff pedestrian dynamics model. Journal of Siberian Federal University. Mathematics & Physics, 2(3):271–278, 2009.Google Scholar
  24. 24.
    T. Kretz. The use of dynamic distance potential fields for pedestrian flow around corners. In ICEM 2009. TU Delft, 2009.Google Scholar
  25. 25.
    T. Kretz. Applications of the Dynamic Distance Potential Field Method. In Dai, S. et al., editor, TGF ’09, 2009. submitted.Google Scholar
  26. 26.
    T. Kretz. The Dynamic Distance Potential Field in a Situation with Asymmetric Bottleneck Capacities. Lect. Notes Comp. Sc., 6350:480–488, 2010.CrossRefGoogle Scholar
  27. 27.
    J. Ondřej, J. Pettré, A.H. Olivier, and S. Donikian. A synthetic-vision based steering approach for crowd simulation. ACM TOG, 29(4):1–9, 2010.CrossRefGoogle Scholar
  28. 28.
    D. Dressler, M. Groß, J.P. Kappmeier, T. Kelter, J. Kulbatzki, D. Plümpe, G. Schlechter, M. Schmidt, M. Skutella, and S. Temme. On the use of network flow techniques for assigning evacuees to exits. Procedia Engineering, 3:205–215, 2010.CrossRefGoogle Scholar
  29. 29.
    M. Höcker, V. Berkhahn, A. Kneidl, A. Borrmann, and W. Klein. Graph-based approaches for simulating pedestrian dynamics in building models. In ECPPM 2010, 2010.Google Scholar
  30. 30.
    M. Moussaïd, D. Helbing, and G. Theraulaz. How simple rules determine pedestrian behavior and crowd disasters. PNAS, 108(17):6884, 2011.Google Scholar
  31. 31.
    A.U. Kemloh Wagoum, A. Seyfried, and S. Holl. Modelling the dynamic route choice of pedestrians to assess the criticality of building evacuation. Adv. Compl. Sys., 15: 1250029, 2012.MathSciNetCrossRefGoogle Scholar
  32. 32.
    T. Kretz, A. Große, S. Hengst, L. Kautzsch, A. Pohlmann, P. Vortisch. Quickest Paths in Simulations of Pedestrians. Adv. Compl. Sys., 14:733, 2011.CrossRefGoogle Scholar
  33. 33.
    H. Klüpfel, A. Seyfried, S. Holl, M. Boltes, M. Chraibi, U. Kemloh, A. Portz, J. Liddle, T. Rupprecht, A. Winkens, W. Klingsch, C. Eilhardt, S. Nowak, A. Schadschneider, T. Kretz, and M. Krabbe. HERMES – Evacuation Assistant for Arenas. In Future Security, 2010. eprint.Google Scholar
  34. 34.
    M. Schreckenberg and S.D. Sharma, editors. Pedestrian and Evacuation Dynamics. Springer, 2002.Google Scholar
  35. 35.
    R.D. Peacock, E.D. Kuligowski, and J.D. Averill, editors. Pedestrian and Evacuation Dynamics. Springer, 2011.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.PTV Planung Transport Verkehr AGKarlsruheGermany

Personalised recommendations