Advertisement

Semantic Pervasive Advertising

  • Lorenzo Carrara
  • Giorgio Orsi
  • Letizia Tanca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7994)

Abstract

Pervasive advertising targets consumers on-the-move with ads displayed on their mobile devices. As for web advertising, ads are distributed by embedding them into websites and apps, easily flooding consumers with a large number of uninteresting offers. As the pervasive setting amplifies traditional issues such as targeting, cost, and privacy, we argue the need for a new perspective on the problem. We introduce PervADs, a privacy-preserving, user-centric, and pervasive ads-distribution platform which uses semantic technologies to reason about the consumer’s context and the intended target of the ads.

Keywords

Advertising Campaign Dimension Assignment White Node Online Advertising Semantic Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bolchini, C., Quintarelli, E., Tanca, L.: Carve: Context-aware automatic view definition over relational databases. Inf. Syst. 38(1), 45–67 (2013)CrossRefGoogle Scholar
  2. 2.
    Broder, A., Fontoura, M., Josifovski, V., Riedel, L.: A semantic approach to contextual advertising. In: SIGIR, pp. 559–566 (2007)Google Scholar
  3. 3.
    Bulander, R., Decker, M., Schiefer, G., Kolmel, B.: Comparison of different approaches for mobile advertising. In: WMCS, pp. 174–182 (2005)Google Scholar
  4. 4.
    de Castro, J.E., Shimakawa, H.: Mobile advertisement system utilizing user’s contextual information. In: MDM, pp. 91–95 (2006)Google Scholar
  5. 5.
    Wireless Federation. Wireless news, analysis: are mobile ads the next gold rush? (2007)Google Scholar
  6. 6.
    Di Ferdinando, A., Rosi, A., Lent, R., Manzalini, A., Zambonelli, F.: MyAds: A system for adaptive pervasive advertisements. Pervasive Mob. Comput. 5(5), 385–401 (2009)CrossRefGoogle Scholar
  7. 7.
    Goldfarb, A., Tucker, C.E.: Privacy regulation and online advertising. Management Science 57(1), 57–71 (2011)CrossRefGoogle Scholar
  8. 8.
    Haddadi, H., Hui, P., Brown, I.: MobiAd: private and scalable mobile advertising. In: MobiArch, pp. 33–38 (2010)Google Scholar
  9. 9.
    Kim, B., Ha, J., Lee, S., Kang, S., Lee, Y., Rhee, Y., Nachman, L., Song, J.: AdNext: a visit-pattern-aware mobile advertising system for urban commercial complexes. In: HotMobile, pp. 7–12 (2011)Google Scholar
  10. 10.
    Kurkovsky, S., Harihar, K.: Using ubiquitous computing in interactive mobile marketing. Personal Ubiquitous Comput. 10(4), 227–240 (2006)CrossRefGoogle Scholar
  11. 11.
    Mirizzi, R., Ragone, A., di Noia, T., di Sciascio, E.: Semantic tags generation and retrieval for online advertising. In: CIKM, pp. 1089–1098 (2010)Google Scholar
  12. 12.
    Orsi, G.: Context Based Querying of Dynamic and Heterogeneous Information Sources. PhD thesis, Politecnico di Milano (2011)Google Scholar
  13. 13.
    Orsi, G., Zimeo, E., Tanca, L.: Context aware, keyword based selection of natural language query patterns. In: EDBT, pp. 189–200 (2011)Google Scholar
  14. 14.
    Ranganathan, A., Campbell, R.H.: Advertising in a pervasive computing environment. In: WMC, pp. 10–14 (2002)Google Scholar
  15. 15.
    Rashid, O., Coulton, P., Edwards, R.: Providing location based information/advertising for existing mobile phone users. Personal Ubiquitous Comput. 12(1), 3–10 (2008)CrossRefGoogle Scholar
  16. 16.
    Ratsimor, O., Finin, T., Joshi, A., Yesha, Y.: eNcentive: a framework for intelligent marketing in mobile peer-to-peer environments. In: ICEC, pp. 87–94 (2003)Google Scholar
  17. 17.
    Sala, M.C., Partridge, K., Jacobson, L., “Bo” Begole, J.: An exploration into activity-informed physical advertising using PEST. In: LaMarca, A., Langheinrich, M., Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 73–90. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Wu, X., Yan, J., Liu, N., Yan, S., Chen, Y., Chen, Z.: Probabilistic latent semantic user segmentation for behavioral targeted advertising. In: ADKDD, pp. 10–17 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lorenzo Carrara
    • 1
  • Giorgio Orsi
    • 2
  • Letizia Tanca
    • 3
  1. 1.Cubica S.r.l.Italy
  2. 2.Department of Computer ScienceUniversity of OxfordUK
  3. 3.Dipartimento di Elettronica e InformazionePolitecnico di MilanoItaly

Personalised recommendations