Observing Community Resiliency in Social Media

  • Robert M. Patton
  • Chad A. Steed
  • Chris G. Stahl
  • Jim N. Treadwell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7975)

Abstract

In spite of social media’s lack of structural integrity, accuracy, and reduced noise with respect to other forms of communication, it plays an increasingly vital role in the observation of societal actions before, during, and after significant events. In October 2012, Hurricane Sandy making landfall on the northeastern coasts of the United States demonstrated this role. This work provides a preliminary view into how social media could be used to monitor and gauge community resilience to such natural disasters. We observe, evaluate, and visualize how Twitter data evolves over time before, during, and after a natural disaster such as Hurricane Sandy and what opportunities there may be to leverage social media for situational awareness and emergency response.

Keywords

social media temporal analysis community resilience 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, D.: The Study of Natural Disasters, 1977-97: Some Reflections on a Changing Field of Knowledge. Disasters 21(4), 284–304 (1997)CrossRefGoogle Scholar
  2. 2.
    Birregah, B., Top, T., Perez, C., Chatelet, E., Matta, N., Lemercier, M., Snoussi, H.: Multi-layer Crisis Mapping: A Social Media-Based Approach. In: 2012 IEEE 21st International Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 379–384 (2012)Google Scholar
  3. 3.
    Bruneau, M., et al.: A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthquake Spectra 19(4), 733–752 (2003)CrossRefGoogle Scholar
  4. 4.
    Chi, T., et al.: Research on information system for natural disaster monitoring and assessment. In: Proc. of the 2003 IEEE International Geoscience and Remote Sensing Symposium (2003)Google Scholar
  5. 5.
    Chu, E.T., Chen, Y.-L., Lin, J.-Y., Liu, J.W.-S.: Crowdsourcing support system for disaster surveillance and response. In: 2012 15th International Symposium on Wireless Personal Multimedia Communications (WPMC), pp. 21–25 (2012)Google Scholar
  6. 6.
    Fung, G.P.C., et al.: Stock prediction: Integrating text mining approach using real-time news. In: Proc. of the 2003 IEEE International Conference on Computational Intelligence for Financial Engineering, pp. 395–403 (2003)Google Scholar
  7. 7.
    Fung, G.P.C., et al.: The predicting power of textual information on financial markets. IEEE Intelligent Informatics Bulletin 5(1) (June 2005)Google Scholar
  8. 8.
    Gruhl, D., et al.: The predictive power of online chatter. In: Proceeding of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, Chicago, Illinois, pp. 78–87 (2005)Google Scholar
  9. 9.
    Hussain, M., et al.: Emerging geo-information technologies (GIT) for natural disaster management in Pakistan: an overview. In: Proc. of the 2nd International Conference on Recent Advances in Space Technologies (2005)Google Scholar
  10. 10.
    Jie, et al.: Using Social Media to Enhance Emergency Situation Awareness. Intelligent Systems 27(6), 52–59 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kreimer, A., Arnold, M., Carlin, A.: Building Safer Cities: The Future of Disaster Risk. World Bank Publications (2003)Google Scholar
  12. 12.
    Little, R.G.: Toward more robust infrastructure: observations on improving the resilience and reliability of critical systems. In: Proc. of the 36th Annual Hawaii International Conference on System Sciences (2003)Google Scholar
  13. 13.
    Llinas, J.: Information fusion for natural and man-made disasters. In: Proc. of the 5th International Conference on Information Fusion, pp. 570–576 (2002)Google Scholar
  14. 14.
    Patton, R.M., et al.: Discovery, analysis, and characteristics of event impacts. In: 2008 11th International Conference on Information Fusion, pp. 1–8 (2008)Google Scholar
  15. 15.
    Yu, J.X., Ng, M.K., Huang, J.Z.: Patterns discovery based on time-series decomposition. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, p. 336. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Robert M. Patton
    • 1
  • Chad A. Steed
    • 1
  • Chris G. Stahl
    • 1
  • Jim N. Treadwell
    • 1
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations