Advertisement

Semantic Annotation of the CEREALAB Database by the AGROVOC Linked Dataset

  • Domenico Beneventano
  • Sonia Bergamaschi
  • Serena Sorrentino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7971)

Abstract

The objective of the CEREALAB database is to help the breeders in choosing molecular markers associated to the most important traits. Phenotypic and genotypic data obtained from the integration of open source databases with the data obtained by the CEREALAB project are made available to the users. The CEREALAB database has been and is currently extensively used within the frame of the CEREALAB project.

This paper presents the main achievements and the ongoing research to annotate the CEREALAB database and to publish it in the Linking Open Data network, in order to facilitate breeders and geneticists in searching and exploiting linked agricultural resources. One of the main focus of this paper is to discuss the use of the AGROVOC Linked Dataset both to annotate the CEREALAB schema and to discover schema-level mappings among the CEREALAB Dataset and other resources of the Linking Open Data network, such as NALT, the National Agricultural Library Thesaurus, and DBpedia.

Keywords

Semantic Annotation Frost Damage Semantic Mapping Word Sense Disambiguation Link Open Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beneventano, D., Bergamaschi, S., Dannaoui, A.R., Milc, J., Pecchioni, N., Sorrentino, S.: The CEREALAB database: Ongoing research and future challenges. In: Dodero, J.M., Palomo-Duarte, M., Karampiperis, P. (eds.) MTSR 2012. CCIS, vol. 343, pp. 336–341. Springer, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-642-35233-1_32 CrossRefGoogle Scholar
  2. 2.
    Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: Synthesizing an integrated ontology. IEEE Internet Computing 7(5), 42–51 (2003)CrossRefGoogle Scholar
  3. 3.
    Beneventano, D., Dannoui, A.R., Sala, A.: Integration and provenance of cereals genotypic and phenotypic data. In: SEBD 2011, Proceedings of the 20th Italian Symposium on Advanced Database Systems, Venice, Italy, June 24-27, pp. 84–94 (2012); poster presented at the Data Integration in the Life Sciences Conference, Maryland, June 28-29, (2012)Google Scholar
  4. 4.
    Bergamaschi, S., Beneventano, D., Guerra, F., Orsini, M.: Data integration. In: Handbook of Conceptual Modeling: Theory, Practice and Research Challenges. Springer (2011)Google Scholar
  5. 5.
    Bergamaschi, S., Beneventano, D., Po, L., Sorrentino, S.: Automatic normalization and annotation for discovering semantic mappings. In: Ceri, S., Brambilla, M. (eds.) Search Computing II. LNCS, vol. 6585, pp. 85–100. Springer, Heidelberg (2011), http://dl.acm.org/citation.cfm?id=1983774.1983785 CrossRefGoogle Scholar
  6. 6.
    Bergamaschi, S., Po, L., Sorrentino, S.: Automatic annotation in data integration systems. In: Meersman, R., Tari, Z. (eds.) OTM 2007 Ws, Part I. LNCS, vol. 4805, pp. 27–28. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  8. 8.
    Caracciolo, C., Morshed, A., Stellato, A., Johannsen, G., Jaques, Y., Keizer, J.: Thesaurus maintenance, alignment and publication as linked data: The agrovoc use case. International Journal of Metadata, Semantics and Ontologies 7(1), 65–75 (2012), http://eprints.rclis.org/17734/ CrossRefGoogle Scholar
  9. 9.
    Coletta, R., Castanier, E., Valduriez, P., Frisch, C., Ngo, D., Bellahsene, Z.: Public data integration with websmatch. CoRR abs/1205.2555 (2012)Google Scholar
  10. 10.
    Green, J.M., Harnsomburana, J., Schaeffer, M.L., Lawrence, C.J., Shyu, C.R.: Multi-source and ontology-based retrieval engine for maize mutant phenotypes. Database (2011), http://database.oxfordjournals.org/content/2011/bar012.abstract
  11. 11.
    Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology alignment for linked open data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 402–417. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Kobayashi, N., Ishii, M., Takahashi, S., Mochizuki, Y., Matsushima, A., Toyoda, T.: Semantic-JSON: a lightweight web service interface for semantic web contents integrating multiple life science databases. Nucleic Acids Research 39(Web Server) (June 2011), http://www.nar.oxfordjournals.org/cgi/doi/10.1093/nar/gkr353
  13. 13.
    Lukose, D.: World-wide semantic web of agriculture knowledge. Journal of Integrative Agriculture 11(5), 769–774 (2012), http://www.sciencedirect.com/science/article/pii/S2095311912600665 CrossRefGoogle Scholar
  14. 14.
    Marjit, U., Sharma, K., Biswas, U.: Provenance representation and storage techniques in linked data: A state-of-the-art survey. International Journal of Computer Applications 38(9), 23–28 (2012); published by Foundation of Computer Science, New York, USACrossRefGoogle Scholar
  15. 15.
    Milc, J., Sala, A., Bergamaschi, S., Pecchioni, N.: A genotypic and phenotypic information source for marker-assisted selection of cereals: the cerealab database. Database (2011)Google Scholar
  16. 16.
    Nešić, S., Rizzoli, A.E., Athanasiadis, I.N.: Publishing and Linking Semantically Annotated Agro-Environmental resources to LOD with AGROPub. In: Proceedings of the 5th Metadata and Semantics Research Conference, MTSR, Izmir, Turkey (2011) (in press)Google Scholar
  17. 17.
    Nolin, M.A., Corbeil, J., Lamontagne, L., Dumontier, M.: Bio2rdf: Convert, provide and reuse. In: Nature Precedings Biocuration Meeting 2010, Tokyo, Japan, October 11 (2010)Google Scholar
  18. 18.
    Po, L., Sorrentino, S.: Automatic generation of probabilistic relationships for improving schema matching. Inf. Syst. 36(2), 192–208 (2011)CrossRefGoogle Scholar
  19. 19.
    Rajbhandari, S., Keizer, J.: The agrovoc concept scheme - a walkthrough. Journal of Integrative Agriculture 11(5), 694–699 (2012), http://www.sciencedirect.com/science/article/pii/S2095311912600586 CrossRefGoogle Scholar
  20. 20.
    Sorrentino, S., Bergamaschi, S., Gawinecki, M.: NORMS: An automatic tool to perform schema label normalization. In: Abiteboul, S., Böhm, K., Koch, C., Tan, K.L. (eds.) ICDE, pp. 1344–1347. IEEE Computer Society (2011)Google Scholar
  21. 21.
    Walls, R.L., Athreya, B., Cooper, L., Elser, J., Gandolfo, M.A., Jaiswal, P., Mungall, C.J., Preece, J., Rensing, S., Smith, B., Stevenson, D.W.: Ontologies as integrative tools for plant science. American Journal of Botany 99(8), 1263–1275 (2012), http://www.amjbot.org/content/99/8/1263.abstract CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Domenico Beneventano
    • 1
  • Sonia Bergamaschi
    • 1
  • Serena Sorrentino
    • 1
  1. 1.Department of Engineering ”Enzo Ferrari”University of Modena and Reggio EmiliaModenaItaly

Personalised recommendations