Scalable LCF-Style Proof Translation

  • Cezary Kaliszyk
  • Alexander Krauss
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7998)

Abstract

All existing translations between proof assistants have been notoriously sluggy, resource-demanding, and do not scale to large developments, which has lead to the general perception that the whole approach is probably not practical. We aim to show that the observed inefficiencies are not inherent, but merely a deficiency of the existing implementations. We do so by providing a new implementation of a theory import from HOL Light to Isabelle/HOL, which achieves decent performance and scalability mostly by avoiding the mistakes of the past. After some preprocessing, our tool can import large HOL Light developments faster than HOL Light processes them. Our main target and motivation is the Flyspeck development, which can be imported in a few hours on commodity hardware. We also provide mappings for most basic types present in the developments including lists, integers and real numbers. This papers outlines some design considerations and presents a few of our extensive measurements, which reveal interesting insights in the low-level structure of larger proof developments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, M.: Introducing HOL Zero - (extended abstract). In: Fukuda, K., van der Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 142–143. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Chaieb, A., Nipkow, T.: Proof synthesis and reflection for linear arithmetic. J. Autom. Reasoning 41(1), 33–59 (2008)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Hales, T.C., Harrison, J., McLaughlin, S., Nipkow, T., Obua, S., Zumkeller, R.: A revision of the proof of the Kepler conjecture. Discrete & Computational Geometry 44(1), 1–34 (2010)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Harrison, J.: Automating elementary number-theoretic proofs using Gröbner bases. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 51–66. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Harrison, J., Zumkeller, R.: update_database module. Part of the HOLLight distributionGoogle Scholar
  6. 6.
    Hurd, J.: The OpenTheory standard theory library. In: Bobaru, M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617, pp. 177–191. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  7. 7.
    Kaliszyk, C., Urban, J.: Initial experiments with external provers and premise selection on HOL Light corpora. In: Fontaine, P., Schmidt, R., Schulz, S. (eds.) PAAR (to appear 2012)Google Scholar
  8. 8.
    Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. CoRR, abs/1211.7012 (2012)Google Scholar
  9. 9.
    Kaufmann, M., Paulson, L.C. (eds.): ITP 2010. LNCS, vol. 6172. Springer, Heidelberg (2010)MATHGoogle Scholar
  10. 10.
    Keller, C., Werner, B.: Importing HOL Light into Coq. In: Kaufmann and Paulson [9], pp. 307–322Google Scholar
  11. 11.
    Krauss, A., Schropp, A.: A mechanized translation from higher-order logic to set theory. In: Kaufmann and Paulson [9], pp. 323–338Google Scholar
  12. 12.
    Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 298–302. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Weigend, J., Siedersleben, J., Adersberger, J.: Dynamische Analyse mit dem Software-EKG. Informatik Spektrum 34(5), 484–495 (2011)CrossRefGoogle Scholar
  14. 14.
    Freek Wiedijk. Formalizing 100 theorems, http://www.cs.ru.nl/~freek/100/
  15. 15.
    Wong, W.: Recording and checking HOL proofs. In: Schubert, E.T., Windley, P.J., Alves-Foss, J. (eds.) HUG 1995. LNCS, vol. 971, pp. 353–368. Springer, Heidelberg (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Cezary Kaliszyk
    • 1
  • Alexander Krauss
    • 2
  1. 1.University of InnsbruckAustria
  2. 2.QAware GmbHGermany

Personalised recommendations