A Machine-Checked Proof of the Odd Order Theorem

  • Georges Gonthier
  • Andrea Asperti
  • Jeremy Avigad
  • Yves Bertot
  • Cyril Cohen
  • François Garillot
  • Stéphane Le Roux
  • Assia Mahboubi
  • Russell O’Connor
  • Sidi Ould Biha
  • Ioana Pasca
  • Laurence Rideau
  • Alexey Solovyev
  • Enrico Tassi
  • Laurent Théry
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7998)

Abstract

This paper reports on a six-year collaborative effort that culminated in a complete formalization of a proof of the Feit-Thompson Odd Order Theorem in the Coq proof assistant. The formalized proof is constructive, and relies on nothing but the axioms and rules of the foundational framework implemented by Coq. To support the formalization, we developed a comprehensive set of reusable libraries of formalized mathematics, including results in finite group theory, linear algebra, Galois theory, and the theories of the real and complex algebraic numbers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appel, K., Haken, W.: Every map is four colourable. Bulletin of the American Mathematial Society 82, 711–712 (1976)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Aschbacher, M.: Finite Group Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2000)Google Scholar
  4. 4.
    Avigad, J.: Type inference in mathematics. Bulletin of the European Association for Theoretical Computer Science, EATCS (106), 78–98 (2012)Google Scholar
  5. 5.
    Avigad, J., Harrison, J.: Formally verified mathematics. To appear in the Communications of the ACMGoogle Scholar
  6. 6.
    Bender, H., Glauberman, G.: Local analysis for the Odd Order Theorem. Number 188 in London Mathematical Society, LNS. Cambridge University Press (1994)Google Scholar
  7. 7.
    Bertot, Y., Castéran, P.: Interactive theorem proving and program development: Coq’Art: The calculus of inductive constructions. Springer, Berlin (2004)CrossRefGoogle Scholar
  8. 8.
    Bertot, Y., Gonthier, G., Ould Biha, S., Pasca, I.: Canonical big operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 86–101. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Cohen, C.: Construction of real algebraic numbers in coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406, pp. 67–82. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Cohen, C., Mahboubi, A.: A formal quantifier elimination for algebraically closed fields. In: Autexier, S., Calmet, J., Delahaye, D., Ion, P.D.F., Rideau, L., Rioboo, R., Sexton, A.P. (eds.) AISC 2010. LNCS, vol. 6167, pp. 189–203. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Coquand, T., Huet, G.: The calculus of constructions. Information and Computation 76(2-3), 95–120 (1988)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Coquand, T., Paulin-Mohring, C.: Inductively defined types. In: Martin-Löf, P., Mints, G. (eds.) COLOG 1988. LNCS, vol. 417, pp. 50–66. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  13. 13.
    Derksen, H.: The fundamental theorem of algebra and linear algebra. American Mathematical Monthly 100(7), 620–623 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Feit, W., Thompson, J.G.: Solvability of groups of odd order. Pacific Journal of Mathematics 13(3), 775–1029 (1963)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Gonthier, G.: Formal proof—the Four Color Theorem. Notices of the AMS 55(11), 1382–1393 (2008)MathSciNetMATHGoogle Scholar
  17. 17.
    Gonthier, G.: Point-free, set-free concrete linear algebra. In: van Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 103–118. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. Journal of Formalized Reasoning 3(2), 95–152 (2010)MathSciNetMATHGoogle Scholar
  19. 19.
    Gonthier, G., Mahboubi, A., Rideau, L., Tassi, E., Théry, L.: A Modular Formalisation of Finite Group Theory. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 86–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Gonthier, G., Mahboubi, A., Tassi, E.: A Small Scale Reflection Extension for the Coq system. Rapport de recherche RR-6455, INRIA (2012)Google Scholar
  21. 21.
    Gonthier, G., Ziliani, B., Nanevski, A., Dreyer, D.: How to make ad hoc proof automation less ad hoc. In: ICFP, pp. 163–175 (2011)Google Scholar
  22. 22.
    Gorenstein, D.: Finite Groups. AMS Chelsea Publishing Series (2007)Google Scholar
  23. 23.
    Hales, T.: Formal proof. Notices of the AMS 55(11), 1370–1380 (2008)MathSciNetMATHGoogle Scholar
  24. 24.
    Harrison, J.: Without Loss of Generality. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 43–59. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  25. 25.
    Hedberg, M.: A coherence theorem for Martin-Löf’s type theory. Journal of Functional Programming 8(4), 413–436 (1998)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Hinze, R.: Fun with phantom types. In: Gibbons, J., de Moor, O. (eds.) The Fun of Programming, Cornerstones of Computing, pp. 245–262 (2003)Google Scholar
  27. 27.
    Huppert, B., Blackburn, N.: Finite Groups II. Grundlehren Der Mathematischen Wissenschaften. Springer London, Limited (1982)Google Scholar
  28. 28.
    Isaacs, I.: Character Theory of Finite Groups. AMS Chelsea Pub. Series (1976)Google Scholar
  29. 29.
    Klein, G., et al.: sel4: Formal verification of an os kernel. In: SOPS ACM SIGOPS, pp. 207–220 (2009)Google Scholar
  30. 30.
  31. 31.
    Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups: An Introduction. Universitext Series. Springer (2010)Google Scholar
  32. 32.
    Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with a proof assistant. In: POPL, pp. 42–54. ACM Press (2006)Google Scholar
  33. 33.
    Mines, R., Richman, F., Ruitenburg, W.: A course in constructive algebra. Universitext (1979). Springer (1988)Google Scholar
  34. 34.
    Neumann, P.M., Mann, A.J.S., Tompson, J.C.: The collected papers of William Burnside, vol. I. Oxford University Press (2004)Google Scholar
  35. 35.
    O’Connor, R.: Classical mathematics for a constructive world. Mathematical Structures in Computer Science 21, 861–882 (2011)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Peterfalvi, T.: Character Theory for the Odd Order Theorem. London Mathematical Society, LNS, vol. 272. Cambridge University Press (2000)Google Scholar
  37. 37.
    Rotman, J.: Galois Theory. Universitext (1979). Springer (1998)Google Scholar
  38. 38.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry (1948); 2nd edn. University of California Press, Berkeley (1951)Google Scholar
  39. 39.
    The Mathematical Component Team. A Formalization of the Odd Order Theorem using the Coq proof assistant (September 2012), http://www.msr-inria.inria.fr/Projects/math-components/feit-thompson

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Georges Gonthier
    • 1
  • Andrea Asperti
    • 1
  • Jeremy Avigad
    • 1
  • Yves Bertot
    • 1
  • Cyril Cohen
    • 1
  • François Garillot
    • 1
  • Stéphane Le Roux
    • 1
  • Assia Mahboubi
    • 1
  • Russell O’Connor
    • 1
  • Sidi Ould Biha
    • 1
  • Ioana Pasca
    • 1
  • Laurence Rideau
    • 1
  • Alexey Solovyev
    • 1
  • Enrico Tassi
    • 1
  • Laurent Théry
    • 1
  1. 1.Microsoft Research - Inria Joint CentreFrance

Personalised recommendations